

ADDENDUM TO THE CONTRACT

for the

Lee Street Pump Station Renovation Contract No. BE-19-250

ADDENDUM NO.: ONE

CURRENT DEADLINE FOR BIDS:

July 3, 2019

PREVIOUS ADDENDA: NONE

ISSUED BY: City and Borough of Juneau ENGINEERING DEPARTMENT 155 South Seward Street Juneau, Alaska 99801

DATE ADDENDUM ISSUED:

June 7, 2019

The following items of the contract are modified as herein indicated. All other items remain the same. This addendum has been issued and is posted online. Please refer to the CBJ Engineering Contracts Division webpage at: <u>http://www.juneau.org/engineering_ftp/contracts/Contracts.php</u>

PROJECT MANUAL:

Item No. 1 **ADD** Electrical SECTION after page 58 of Special Provisions labeled as ADDENDUM No. 1.

By:

Total number of pages contained within this Addendum: 74

Add the following Section:

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Connectors, splices, and terminations rated 600 V and less.
- B. Related Requirements:
 - 1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.

1.3 DEFINITIONS

- A. RoHS: Restriction of Hazardous Substances.
- B. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

- B. Standards:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 - 2. RoHS compliant.
 - 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- C. Conductor Insulation:
 - 1. Type THHN and Type THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.

2.2 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Aluminum.
 - 2. Type: One hole with standard barrels.
 - 3. Termination: Crimp.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Stranded copper.
- B. Branch Circuits: Stranded copper.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway and type XHHW-2, single conductors in raceway.
- B. Exposed Branch Circuits: Type THHN/THWN-2, single conductors in raceway.
- C. VFC Output Circuits: Type XHHW-2 in metal conduit.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 - a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

- b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- 4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 6 months after date of Substantial Completion.
- B. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

Add the following Section:

SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backboards.
 - 2. Category 5e balanced twisted pair cable.
 - 3. Balanced twisted pair cabling hardware.
 - 4. Low-voltage control cabling.
 - 5. Control-circuit conductors.
 - 6. Identification products.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- C. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency, RCDD, layout technician, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. RoHS compliant.

2.2 BACKBOARDS

- A. Description: Plywood, 3/4 inches thick.
- B. Painting: Paint plywood on all sides and edges.

2.3 CATEGORY 5e BALANCED TWISTED PAIR CABLE

- A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 5e cable at frequencies up to 100 MHz.
- B. Standard: Comply with ICEA S-90-661, NEMA WC 63.1, and TIA-568-C.2 for Category 5e cables.
- C. Conductors: 100-ohm, 24 AWG solid copper.
- D. Shielding/Screening: Unshielded twisted pairs (UTP).
- E. Cable Rating: Riser.
- F. Jacket: Blue thermoplastic.

2.4 BALANCED TWISTED PAIR CABLE HARDWARE

- A. Description: Hardware designed to connect, splice, and terminate balanced twisted pair copper communications cable.
- B. General Requirements for Balanced Twisted Pair Cable Hardware:
 - 1. Comply with the performance requirements of Category 5e.
 - 2. Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
 - 3. Cables shall be terminated with connecting hardware of same category or higher.
- C. Plugs and Plug Assemblies:
 - 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair 100-ohm unshielded or shielded balanced twisted pair cable.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

CONTROL-VOLTAGE ELECTRICAL POWER CABLES Page 65

- 2. Comply with IEC 60603-7-1, IEC 60603-7-2, IEC 60603-7-3, IEC 60603-7-4, and IEC 60603-7.5.
- 3. Marked to indicate transmission performance.

2.5 CONTROL CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, No. 16 AWG, stranded tinned-copper conductors.
 - 2. Polyethylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 18 AWG, stranded tinned-copper drain wire.
 - 6. Flame Resistance: Comply with UL 1685.

2.6 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
- B. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

2.7 SOURCE QUALITY CONTROL

- A. Factory test twisted pair cables according to TIA-568-C.2.
- B. Cable will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Test cables on receipt at Project site.
 - 1. Test each pair of twisted pair cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

- A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.
 - 1. Outlet boxes for cables shall be no smaller than 4 inches (102 mm) square by 2-1/2 inches (64 mm) deep.
- B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.
- C. Install manufactured conduit sweeps and long-radius elbows if possible.
- D. Backboards: Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA-568-C Series of standards.
 - 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
 - 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable between termination, tap, or junction points.
 - 5. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Do not use heat lamps for heating.
 - 9. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Monitor cable pull tensions.
 - 10. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
- C. Balanced Twisted Pair Cable Installation:
 - 1. Comply with TIA-568-C.2.
 - 2. Do not untwist balanced twisted pair cables more than 1/2 inch (12 mm) at the point of termination to maintain cable geometry.
- D. Installation of Control-Circuit Conductors:

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

CONTROL-VOLTAGE ELECTRICAL POWER CABLES Page 67

- 1. Install wiring in raceways.
- 2. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- E. Separation from EMI Sources:
 - 1. Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded copper voice and data communications cable from potential EMI sources including electrical power lines and equipment.
 - 2. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment or Circuit Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
 - 3. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches (1200 mm).

3.4 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified with a tag for future use.

3.5 GROUNDING

- A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
- B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.6 IDENTIFICATION

- A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Identify data and communications system components, wiring, and cabling according to TIA-606-B; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.
- C. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination, but not after cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in its "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in its "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- B. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- C. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 260523

Add the following Section:

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Electrical components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- C. Conduit Hubs: Mechanical type, terminal with threaded hub.
- D. Water Pipe Clamps:
 - 1. Mechanical type, two pieces with zinc-plated bolts.
 - a. Material: Tin-plated aluminum.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Stranded copper.
- B. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Three-phase motor and appliance branch circuits.
 - 4. Flexible raceway runs.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS Page 71

3.4 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
- C. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- B. Grounding system will be considered defective if it does not pass tests and inspections.

END OF SECTION 260526

Add the following Section:

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Steel slotted support systems.
 - 2. Conduit and cable support devices.
 - 3. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, clamps, through bolts, and toggle bolts.
 - 4. Fabricated metal equipment support assemblies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Fasteners.
 - e. Anchors.
 - f. Saddles.
 - g. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS Page 73

- 1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the supported equipment and systems will be fully operational after the seismic event."
- 2. Component Importance Factor: 1.0.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame Rating: Class 1.
 - 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 - 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 2. Material for Channel, Fittings, and Accessories: Stainless steel, Type 304.
 - 3. Channel Width: 1-5/8 inches (41.25 mm).
- B. Conduit and Cable Support Devices: Stainless-steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - 3. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 4. Toggle Bolts: All Stainless-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS Page 74

ADDENDUM NO. 1

- 1. NECA 1.
- 2. NECA 101
- 3. NECA 102.
- 4. NECA 105.
- 5. NECA 111.
- B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- C. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 3. To Existing Concrete: Expansion anchor fasteners.
 - 4. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 5. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

Add the following Section:

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Metal wireways and auxiliary gutters.
 - 3. Boxes, enclosures, and cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. EMT: Comply with ANSI C80.3 and UL 797.
 - 3. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.

LEE STREET PUMP STATION REPLACEMENT

Contract No. BE19-120

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS Page 77

- 4. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Setscrew or compression.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
- B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- C. Wireway Covers: Screw-cover type unless otherwise indicated.
- D. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- D. Device Box Dimensions: 4 inches square by 2-1/2 inches deep (102 mm square by 64 mm deep).
- E. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- F. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Metal barriers to separate wiring of different systems and voltage.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS Page 78

- 1. Exposed Conduit: GRC and IMC.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- C. Minimum Raceway Size: 1/2-inch (16-mm) trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 2. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter.
- C. Complete raceway installation before starting conductor installation.
- D. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.
- E. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- F. Install conduits parallel or perpendicular to building lines.
- G. Support conduit within 12 inches (300 mm) of enclosures to which attached.
- H. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- J. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

- K. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- L. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- M. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
 1.
- N. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches (915 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
- O. Mount boxes at heights indicated on Drawings. Install boxes with height measured to center of box unless otherwise indicated.
- P. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 **PROTECTION**

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION 260533

Add the following Section:

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 - 2. Labels.
 - 3. Tapes.
 - 4. Signs.
 - 5. Cable ties.
 - 6. Fasteners for labels and signs.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with ASME A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied.
 - 2. Colors for 240-V Circuits:

- a. Phase A: Black.
- b. Phase B: Red.
- 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
- 4. Color for Neutral: White.
- 5. Color for Equipment Grounds: Green.
- B. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

2.4 TAPES

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- B. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.5 EQUIPMENT IDENTIFICATION LABELS

- A. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Engraved legend.
 - 2. Thickness:
 - a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 - b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners with 1/4-inch (6.4-mm) grommets in corners for mounting.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

IDENTIFICATION FOR ELECTRICAL SYSTEMS Page 82

- 1. Minimum Width: 3/16 inch (5 mm).
- 2. Tensile Strength at 73 Deg F (23 Deg C) according to ASTM D 638: 12,000 psi (82.7 MPa).
- 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
- 4. Color: Black, except where used for color-coding.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- E. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- F. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

- G. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- H. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- I. Laminated Acrylic or Melamine Plastic Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.
- J. Cable Ties: General purpose, for attaching tags.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive vinyl tape to identify the phase.
- D. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.
- E. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- F. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Selfadhesive labels.
 - 1. Apply to exterior of door, cover, or other access.
- H. Operating Instruction Signs: Laminated acrylic or melamine plastic signs.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

IDENTIFICATION FOR ELECTRICAL SYSTEMS Page 84

- I. Equipment Identification Labels:
 - 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.

END OF SECTION 260553

Add the following Section:

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. MCCB: Molded-case circuit breaker.
- C. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

1.5 INFORMATIONAL SUBMITTALS

A. Panelboard Schedules: For installation in panelboards.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.9 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.
- D. Enclosures: Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 3. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
- E. Incoming Mains:
 - 1. Location: Top.
- F. Phase, Neutral, and Ground Buses:
 - 1. Material: Tin-plated aluminum.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

- G. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum.
 - 2. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 3. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
- H. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- I. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.
 - 1. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 POWER PANELBOARDS

- A. Panelboards: NEMA PB 1, distribution type.
- B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches (914 mm) high, provide two latches, keyed alike.
- C. Mains: Lugs only.
- D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489 to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - 2. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - d. Multipole units enclosed in a single housing with a single handle.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panelboards according to NECA 407.
- B. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Mount panelboard cabinet plumb and rigid without distortion of box.
- F. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.
- G. Install overcurrent protective devices and controllers not already factory installed.
- H. Install filler plates in unused spaces.
- I. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.

- 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA Acceptance Test Specifications. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 6 months after date of Substantial Completion.
 - c. Instruments and Equipment:
 - 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262416

Add the following Section:

SECTION 262713 - ELECTRICITY METERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes electricity metering and work to accommodate utility company revenue meters.

1.3 DEFINITIONS

A. KY or KYZ Pulse: Term used by the metering industry to describe a method of measuring consumption of electricity (kWh) that is based on a relay opening and closing in response to the rotation of the disk in the meter. Electronic meters generate pulses electronically.

1.4 ACTION SUBMITTALS

- A. Product Data:
 - 1. For each type of meter.
 - 2. For metering infrastructure components.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:
 - 1. Owner shall be notified and issued written permission no fewer than two weeks in advance of proposed interruption of electrical service.

1.6 COORDINATION

- A. Electrical Service Connections:
 - 1. Coordinate with utility companies and utility-furnished components.
 - a. Comply with requirements of utility providing electrical power services.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

ELECTRICITY METERING Page 93

ADDENDUM NO. 1

b. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Meters will be furnished by utility company.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 916.

2.2 UTILITY METERING INFRASTRUCTURE

- A. Install metering accessories furnished by the utility company, complying with its requirements.
- B. Meter Sockets:
 - 1. Comply with requirements of electrical-power utility company.
 - 2. Meter Sockets: Steady-state and short-circuit current ratings shall meet indicated circuit ratings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with equipment installation requirements in NECA 1.
- B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written instructions.
- C. Install arc-flash labels as required by NFPA 70.
- D. Wiring Method:
 - 1. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 262713

Add the following Section:

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. GFCI receptacles, 125 V, 20 A.
 - 3. Toggle switches, 120/277 V, 20 A.
 - 4. Wall plates.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packinglabel warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Gray unless otherwise indicated or required by NFPA 70 or device listing.
- F. Wall Plate Color: For plastic covers, match device color.
- G. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.

2.3 GFCI RECEPTACLES, 125 V, 20 A

- A. Duplex GFCI Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- B. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.

- 2.4 TOGGLE SWITCHES, 120/277 V, 20 A
 - A. Single-Pole Switches, 120/277 V, 20 A:
 - 1. Standards: Comply with UL 20 and FS W-S-896.

2.5 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Smooth, high-impact thermoplastic.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.

- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. Tighten unused terminal screws on the device.
- 8. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
- F. Device Plates: Do not use oversized or extra-deep plates.

3.2 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 5. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- D. Wiring device will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

END OF SECTION 262726

Add the following Section:

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600 V ac and less for use in the following:
 - a. Control circuits.
 - b. Enclosed controllers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in PDF format.
 - 5. Coordination charts and tables and related data.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. Include the following:

- 1. Ambient temperature adjustment information.
- 2. Current-limitation curves for fuses with current-limiting characteristics.
- 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in PDF format.
- 4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 - 1. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 - 2. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Feeders: Class J, time delay.
 - 2. Control Transformer Circuits: Class CC, time delay, control transformer duty.
 - 3. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

Add the following Section:

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches
 - 3. Molded-case circuit breakers (MCCBs).

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers.
 - 1. Include plans, elevations, sections, details, and attachments to other work.
 - 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. Include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.8 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

ENCLOSED SWITCHES AND CIRCUIT BREAKERS Page 103

2.2 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

- A. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.
 - 4. 200 A and smaller.
 - 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
 - 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position, and no defeater screw.
- B. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Lugs: Compression type, suitable for number, size, and conductor material.

2.4 NONFUSIBLE SWITCHES

- A. 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- B. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.5 MOLDED-CASE CIRCUIT BREAKERS

A. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

- B. Thermal-Magnetic Circuit Breakers: Inverse time-current thermal element for low-level overloads and instantaneous magnetic trip element for short circuits.
- C. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.
- D. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Install fuses in fusible devices.
- D. Comply with NFPA 70 and NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - 1. Inspect physical and mechanical condition.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that the unit is clean.
 - 4. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - 5. Verify that fuse sizes and types match the Specifications and Drawings.
 - 6. Verify that each fuse has adequate mechanical support and contact integrity.
 - 7. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - 8. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - 9. Verify correct phase barrier installation.
 - 10. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

Add the following Section:

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. DDC: Direct digital control.
- C. EMI: Electromagnetic interference.
- D. LED: Light-emitting diode.
- E. NC: Normally closed.
- F. NO: Normally open.
- G. OCPD: Overcurrent protective device.
- H. PID: Control action, proportional plus integral plus derivative.
- I. RFI: Radio-frequency interference.
- J. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated.
 - 1. Include dimensions and finishes for VFCs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

VARIABLE-FREQUENCY MOTOR CONTROLLERS Page 108

ADDENDUM NO. 1

- B. Shop Drawings: For each VFC indicated.
 - 1. Include mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each VFC from manufacturer.
- B. Source quality-control reports.
- C. Field quality-control reports.
- D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and motor-circuit protector trip settings.
 - b. Manufacturer's written instructions for setting field-adjustable overload relays.
 - c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 - d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
 - e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

1.8 DELIVERY, STORAGE, AND HANDLING

- A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and install temporary electric heating, with at least 250 W per controller.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Subject to compliance with requirements, provide products by the following:
 - 1. Rockwell Automation, Inc.; Allen-Bradley Brand.

2.2 SYSTEM DESCRIPTION

- A. General Requirements for VFCs:
 - 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.
- B. Application: Variable torque.
- C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 5 percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
 - 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
 - 6. Minimum Short-Circuit Current (Withstand) Rating: As shown on Drawings.
 - 7. Ambient Temperature Rating: Not less than 32 deg F (0 deg C) and not exceeding 104 deg F (40 deg C).
 - 8. Humidity Rating: Less than 95 percent (noncondensing).
 - 9. Altitude Rating: Not exceeding 3300 feet (1000 m).
 - 10. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
 - 11. Speed Regulation: Plus or minus 5 percent.
 - 12. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
 - 13. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 16 or 32 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.

- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9 seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- J. Self-Protection and Reliability Features:
 - 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - 5. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 8. Loss-of-phase protection.
 - 9. Reverse-phase protection.
 - 10. Short-circuit protection.
 - 11. Motor-overtemperature fault.
- K. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped.
- L. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- M. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

2.3 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. External fault.

- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 - a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (V dc).
 - 9. Set point frequency (Hz).
 - 10. Motor output voltage (V ac).
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 4- to 20-mA dc.
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- 3. Output Signal Interface: A minimum of one programmable analog output signal(s) 4- to 20-mA dc which can be configured for any of the following:
 - a. Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
 - f. Set point frequency (Hz).
- 4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

2.4 LINE CONDITIONING AND FILTERING

- A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.
- B. Output Filtering: Coordinate with pump motor manufacturer.

2.5 OPTIONAL FEATURES

A. Communication Port: RS-232 port, USB 2.0 port, or equivalent.

2.6 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - 1. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

2.7 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.

1. Push Buttons: Shielded.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- 2. Pilot Lights: LED, push to test.
- 3. Selector Switches: Rotary type.
- B. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- C. Cooling Fan and Exhaust System: For NEMA 250, Type 1; UL 508 component recognized: Supply fan, with stainless-steel intake and exhaust grills; 120 - V ac; obtained from integral CPT.
- D. Spare control-wiring terminal blocks; wired.

2.8 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - 1. Test each VFC while connected to its specified motor.
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- B. VFCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems.
- B. Install fuses in each fusible-switch VFC.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- C. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- D. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- E. Comply with NECA 1.

3.3 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
- 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 6 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

- C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.
- D. Set field-adjustable circuit-breaker trip ranges.

3.8 **PROTECTION**

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923

Add the following Section:

SECTION 262945 – INDUSTRIAL CONTROLS AND SENSORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the equipment required for the operation and monitoring of the waste water pumps.

1.3 DEFINITIONS

- A. CE: Conformite Europeene (European Compliance).
- B. CPT: Control power transformer.
- C. CPU: Central processing unit.
- D. DNI: Device Net Interface
- E. ENI: Ethernet Interface
- F. EMI: Electromagnetic interference.
- G. I/O: Input/Output
- H. LAN: Local area network.
- I. LED: Light-emitting diode.
- J. NSF: National Sanitation Foundation.
- K. NC: Normally closed.
- L. NO: Normally open.
- M. PID: Control action, proportional plus integral plus derivative.
- N. PLC: Programmable Logic Controller.
- O. RFI: Radio-frequency interference.
- P. SCADA: Supervisory Control and Data Acquisition

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 119

ADDENDUM NO. 1

- Q. TVSS: Transient voltage surge suppressor.
- R. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of equipment indicated.
 - 1. Include dimensions.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For each article of equipment indicated.
 - 1. Include mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Source quality-control reports.
- B. Sample Warranty: For special warranty.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For equipment to include in emergency, operation, and maintenance manuals.
 - 1. Include the following:
 - a. Manufacturer's written instructions for setting field-adjustable components.
 - b. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
 - c. Shop drawings with "as-installed" characteristics incorporated.

1.8 DELIVERY, STORAGE, AND HANDLING

A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace equipment that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 120

PART 3 - PRODUCTS

2.1 PROGRAMMABLE LOGIC CONTROLLER

- A. Manufacturers: Provide Rockwell Automation, Inc., Allen-Bradley ControlLogix.
- B. Hardware: Unit with all components housed on a single chassis, including power supply, CPU, I/O, and communications. It shall operate in a free air flow environment with no mechanized cooling. Indicators on the front shall provide the status of power, operation, faults, and communications.
 - 1. Power supply: 120 volt, 60 hertz, ac input. 24 volt, dc output with a capacity to supply all subsystems and I/O with a minimum of 400ma.
 - 2. CPU: Self-contained capable of displaying Ladder Rung program execution through its USB communication port; and control all I/O scanning and communications. The module shall include solid state, non-volatile program storage with a minimum capacity of 7000 words of program and data; and capable of addressing program and data operations of up to 14,000 words. The controller system must be capable of storing the following data:
 - a. External Output Status
 - b. External Input Status
 - c. Timer Values
 - d. Counter Values
 - e. Signed Integer Numbers (32 bit)
 - f. Binary data (bit, BCD, HEX)
 - g. ASCII String Data
 - h. Internal Processor Status Information
 - 3. Input/Output modules: A capacity for a minimum of 156 discrete I/O with isolation between internal logic and external circuits of 250 VRMS, minimum continuous. Each I/O point shall have visual indication to display operating condition. Wiring to remote components shall utilize heavy-duty terminal strips with pressure type screw terminals.
 - a. Standard Inputs: 24 Vdc; 120 Vac; and 4-20ma or -10 to +10 V dc.
 - b. Standard Outputs: 5 to 125 Vdc with 2 ampere continuous current capacity at 24 Vdc; 5 to 264 Vac with 2.5 ampere continuous current capacity; and 4-20ma or -10 to +10 Vdc.
 - 4. Communications: RS232 integrated with the CPU; peer-to-peer network (DeviceNet); RS485 (DH485); and Ethernet 100/10 Base T.
 - 5. Programming: Microsoft Windows based relay ladder logic diagramming with an instruction matrix containing a minimum of 128 instructions.
 - 6. Performance: The controller shall execute instructions in timeframes as follows:

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 121

ADDENDUM NO. 1

Instruction	Within
Boolean conditional (contacts)	.79 microseconds
Boolean output (coils)	.98 microseconds
16/32bit math (add / subtract)	2.9 microseconds
16/32bit comparison (<, <=, =, >=, > , /=)	1.2 microseconds
16/32bit circular comparison (limit)	5.5 microseconds
16/32bit move	2.3 microseconds
ASCII String Search of 5 characters	31 microseconds
ASCII String Extract 5 characters	27.4 microseconds
Peer to peer messaging instruction	475 microseconds
128 zone sequencer (drum style)	20 microseconds

2.2 HUMAN MACHINE INTERFACE

- A. <u>Manufacturer</u>: Subject to compliance with requirements, provide Rockwell Automation, Inc., Allen-Bradley PanelView Plus 6.
- B. Hardware: Color Active Matrix (TFT) touch screen display for graphics and text integrated with the PLC and VFC's.
 - 1. Programming Software: Microsoft Windows based.
 - 2. Size and Resolution: 15 inch, nominal, 1024x768
 - 3. Touch screen: 8 wire analog resistive
 - 4. CPU: x86 1.0 GHz
 - 5. Memory: 512 MB, minimum
 - 6. Clock: Battery backed with time stamps on status and alarm reports.
 - 7. Interfaces: SD, USB, and PCI
 - 8. Communications: Ethernet 10/100 Mb and RS232
- C. Environmental:
 - 1. Operating Temperature: 0 to 55 degrees C (32 to 131 degrees F)
 - 2. Storage Temperature: -25 to 70 degrees C (-13 to 158 degrees F)
 - 3. Relative Humididty: 5 to 95 percent, noncondensing.

2.3 WATER PRESSURE TRANSMITTER

- A. Manufacturers Basis-of-Design Product: Subject to compliance with requirements, provide Foxboro, IGP10, or comparable product:
- B. Standards: NSF/ANSI 61.
- C. Transmitter: Low copper, cast aluminum housing; rated IP66 and watertight per NEMA Type 4X, IP66; with 316L stainless steel process wetted material, LCD digital indicator/display, and 4-20 ma DC, HART output.
- D. Mounting: Wall mount with connection to pipe.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 122

- E. Performance Characteristics:
 - 1. Range: Gage pressure per Drawings
 - 2. Accuracy: ± 0.075 percent of span
 - 3. Stability: ± 0.10 percent of URL
 - 4. Temperature Effect: 0.15 percent URL + 0.15 percent of span.
- F. Environmental:
 - 1. Operating Temperature: -10 to 70 degrees C (14 to 158 degrees F).
 - 2. Ambient Temperature: -40 to 100 degrees C (-40 to 212 degrees F).

2.4 WATER FLOW – MAGNETIC SENSOR

- B. Manufacturers Basis-of-Design Product: Subject to compliance with requirements, provide Foxboro, IMT25 with 9300A Series Flow Tube, or comparable product:
- G. Standards: NSF/ANSI 61.
- H. Transmitter: Surface mounted, cast aluminum housing; rated IP66 and watertight per NEMA Type 4X; with 4-20 ma DC output.
- I. Flow tube: The enclosure shall be rated IP67, providing NEMA Type 4X environmental protection. The flow tube material shall consist of Type 316 stainless steel with PTFE liner, Hastelloy electrodes, and ANSI Class 150 flanges.
- J. Performance Characteristics:
 - 5. Range: Flow per Drawings
 - 6. Accuracy: ± 0.5 percent of flow
 - 7. Low Flow Cutoff: 0.033 feet/second.
 - 8. Maximum Velocity: 33 feet/second.
- K. Environmental:
 - 1. Operating Temperature: -10 to 70 degrees C (14 to 158 degrees F).
 - 2. Ambient Temperature: -40 to 100 degrees C (-40 to 212 degrees F).

2.5 INTRUSION SENSOR

- A. Manufacturers Basis-of-Design Product: Subject to compliance with requirements, provide Aleph QT Series, or comparable product.
- B. Intrusion Sensor: Wall mounted, dual element Passive Infrared (PIR) & microwave sensor.
- C. Performance Characteristics:
 - 1. Detection Pattern: 40 foot distance, 70 degree viewing angle.
 - 2. Adjustments and Settings: Pulse Count and microwave sensitivity.
 - 3. Outputs: Tamper and Alarm, Normally Closed contacts.

LEE STREET PUMP STATION REPLACEMENT INDUSTRIAL CONTROLS AND SENSORS Contract No. BE19-120 Page 123

- D. Environmental:
 - 1. Operating Temperature: -10 to 55 degrees C (14 to 131 degrees F).

2.6 ROOM AIR TEMPERATURE TRANSMITTERS

- A. Manufacturers Basis-of-Design Product: Subject to compliance with requirements, provide Kele, ST-T91 Series, or comparable product:
 - 1. Omega EWSE Series
- B. Performance Characteristics:
 - 1. Temperature Range: -1 to 38 degrees C (30 to 100 degrees F)
 - 2. Accuracy: ± 0.2 percent of 1000 ohms at 0 degrees C.
 - 3. Sensitivity: 2.1 Ohms per F degree at 32 degrees F.
- C. Environmental:
 - 1. Operating Temperature: -18 to 60 degrees C (0 to 140 degrees F).

2.7 CONTROLS AND INDICATION

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in NEMA 12 enclosures, unless otherwise indicated.
 - 1. Push Buttons: Shielded.
 - 2. Pilot Lights: LED.
 - 3. Selector Switches: Rotary type.

2.8 ETHERNET SWITCHES

- A. Unmanaged, industrial, passive PoE switch in compliance with IEEE 802.3at/af standard.
- B. Industrial Hardened enclosure.
- C. Support 10/100/1000 Mbps data rates.
- D. System memory: 64 MB, minimum.
- E. Port output power: As required by equipment, 20 watts, minimum. Voltage as required.

PART 3 - EXECUTION

3.1 GENERAL INSTALLATION

A. Examine equipment before installation. Reject equipment that is wet, moisture damaged, or mold damaged.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 124

ADDENDUM NO. 1

- B. Provide new PLC back panels for the new cabinets with PLC and ancillary equipment.
- C. All PLC program development will be completed by the system integrators contracted by the City & Borough of Juneau. Coordinate device parameters to the ENGINEER for the system integrators as required.

3.2 CONTROL WIRING INSTALLATION

- A. Provide wiring between the PLC cabinets, the VFC's and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control devices where applicable.

3.3 IDENTIFICATION

- A. Identify remote devices, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Inspect sensors, transmitters, remote sensor wiring, components, connections, and equipment installation. Test and adjust controls, components, and equipment.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- B. Equipment will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.5 STARTUP SERVICE

- A. Assist with startup service.
 - 1. Adjust devices and equipment. Coordinate ranges and settings with the ENGINEER.
 - 2. Confirm that all device inputs to the PLCs perform as required.
 - 3. Confirm that all PLC outputs initiate control operations as required.

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120

INDUSTRIAL CONTROLS AND SENSORS Page 125

3.6 PROTECTION

A. Replace equipment which has been exposed to water or other liquids, or damaged prior to Substantial Completion.

END OF SECTION

LEE STREET PUMP STATION REPLACEMENT Contract No. BE19-120 INDUSTRIAL CONTROLS AND SENSORS Page 126

Add the following Section:

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following types of LED luminaires:
 - 1. Solid-state luminaires that use LED technology.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 5. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.

a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.5 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each type of luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles.
- C. CRI of 80 CCT of 3500K.
- D. Rated LED engine life of 50,000 hours, minimum.
- E. Internal driver.
- F. Nominal voltage: 120V ac.
- G. Luminaire characteristics: As defined in the Luminaire Schedule in the Drawings.

2.3 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Lens Thickness: At least 0.125-inch (3.175-mm) minimum unless otherwise indicated.

2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems".

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Owner, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- D. Wall-Mounted Luminaires:
 - 1. Attached to structural members in walls.
- E. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 265119