THE CITY AND BOROUGH OF JUNEAU WASTEWATER UTILITY

Biosolids End Use Analysis

Prepared by: City and Borough of Juneau Department of Engineering and Public Works Utilities Division-Wastewater 2009 Radcliffe Road Juneau, AK 99801

> Publication Date: February 2017

Table of Contents

1.0	I	ntroduction and Background1
1.1	Inti	roduction1
1.2	Pro	ject Background1
1.3	Go	als and Objectives2
2.0	E	Biosolids and Residuals Production2
2.1	Wa	stewater Treatment Process2
2.2	Dry	ving Process Description2
2.3	Slu	dge Production Rates3
2.4	Slu	dge Characteristics4
3.0	F	Regulatory Information
3.1	Rev	view of Land Application Regulations6
3	3.1.1	Application Restrictions6
3	3.1.2	Pollutant Concerns
3	3.1.3	Monitoring and Reporting8
3.2	Rev	view of Disposal Regulations8
4.0	F	Reuse and Disposal Options8
4.1	Nat	tionwide Biosolids Reuse and Disposal Practices9
4.2	Lar	nd Application9
2	4.2.1	Erosion Control and Topsoil Replacement10
2	1.2.2	Fertilizer11
2	1.2.3	Reclamation12
4.3	Co-	Disposal12
4.4	Alt	ernative Energy Source13
5.0	E	End Use Ranking and Discussion14
6.0	(Conclusions and Recommendations14
7.0	F	References

LIST OF APPENDICIES

Appendix A – CBJ Biosolids Treatment and Disposal Evaluation-Phase II Appendix B – Thermal Dryer Site Visit Summaries Appendix C – Laboratory Test Results: Sludge, Influent and Effluent

LIST OF TABLES

Table 1 – Comparison of MTP & JDTP Biosolids Nutrient Analysis to Typical Nutrient Range

Table 2 – Comparison of EPA Pollutant Limits for Land Applied Biosolids to CBJ Biosolids

Table 3 – CBJ Wastewater Treatment Influent and Effluent Metals and Nutrients Content

LIST OF FIGURES

Figure 1 – Belt Drying Process Schematic

1.0 Introduction and Background

1.1 Introduction

The City and Borough of Juneau (CBJ) has recently adopted a proven technology for processing wastewater biosolids into a valuable, reusable product. A direct heat, thermal dryer is slated to begin construction at the Mendenhall Wastewater Treatment Plant in mid-2017. Currently, Juneau's biosolids are untreated and shipped out-of-state to a landfill. This disposal practice is both costly and unsustainable. The dryer will replace the current shipping and disposal practice, treating the solids and reducing the overall volume to make a safe, eco-friendly product with a variety of uses.

The Kruger belt dryer will be capable of producing a Class A, granular biosolids product by heating the biosolids to at least 50°C (122°F) resulting in a greater than 90 percent total solids content. The temperature and total solids content values are in accordance with U.S. Environmental Protection Agency (EPA) Clean Water Act, Part 503 rule regarding land application of biosolids; those biosolids meeting the Class A requirement have less stringent regulations for reuse and disposal. Approximately 1,150 dry tons of the reusable dried product will be generated annually.

The thermally dried biosolids product has potential in several markets as an alternative energy source, soil conditioner, or plant nutrient supplement (fertilizer), and can be used in the local landfill as cover material. In light of the quantity generated and multiple reuse options, this document aims to outline those potential markets available to CBJ in the Juneau community and beyond.

1.2 Project Background

The CBJ utilizes three treatment plants for processing wastewater: the Juneau-Douglas Wastewater Treatment Plant (JDTP), Mendenhall Wastewater Treatment Plant (MTP), and Auke Bay Wastewater Treatment Plant (ABTP). These treatment plants process nearly 3.3 million gallons of wastewater per day (MGD), or 1.2 billion gallons annually. Prior to 2010, all dewatered biosolids were incinerated at the JDTP facility.

With the 2010 failure of the wastewater solids incinerator, CBJ Engineering and Public Works implemented a variety of disposal methods. Currently, biosolids are containerized, barged to Seattle and hauled by train to Oregon where they are ultimately dumped into the Columbia Ridge Landfill. As landfilling was only intended to be a temporary fix, CBJ Engineering and Public Works embarked on an extensive multi-year investigation to identify a long-term biosolids treatment and disposal solution.

Working with Tetra Tech and CH2M Hill consultants, CBJ Engineering and Public Works participated in a two-phase study to analyze the available biosolids treatment technologies. The final report, CBJ Biosolids Treatment and Disposal Evaluation-Phase II (Appendix A), analyzed three solutions weighted most appropriate for Juneau as compared to the status quo: a thermal dryer, a thermal dryer with a heat recovery system, and a new incinerator. The results of the study determined that a dryer, either with or without the heat recovery option, was the most economical and feasible choice for Juneau over a 20-year period. To explore the dryer options further, a team of CBJ engineers, wastewater treatment operators and maintenance personnel toured several facilities where dryer systems had been installed and interviewed the employees (see Appendix B for summaries of each site visit). This process was

instrumental in crafting the Request for Proposals (RFP) for dryer manufacturers, and provided important insight into start-up and long-term dryer functionality, vendor response time and availability to maintenance issues, and facility and personnel requirements. In addition, these visits ultimately lead to the decision not to pursue the dryer with a heat recovery system as it presented as a non-reliable solution.

At the request of the Assembly, CBJ Staff and the Utility Advisory Board carefully analyzed other alternatives, including a monofill proposal from a local business. In February 2016, the CBJ Assembly Committee of the Whole, at the recommendation of the Utility Advisory Board (which also alternatively recommended the monofill project) and CBJ staff, approved moving forward with the dryer as the final biosolids treatment solution.

1.3 Goals and Objectives

The goal of this document is to outline the existing conditions of CBJ's wastewater and resulting solids, introduce the dryer technology, outline the regulatory requirements for biosolids reuse and disposal, and summarize the local end use options for the resulting dried pellet product. This document is not intended to finalize a specific end use, but to present the most viable options for further discussion, analysis, and determination.

2.0 Biosolids and Residuals Production

2.1 Wastewater Treatment Process

MTP, JDTP and ABTP all treat and discharge wastewater effluent, or the liquid portion of wastewater. While each facility employs different technology and equipment to treat wastewater, the principles and stages of treatment are the same:

- preliminary treatment removes large debris, solids, and grit;
- secondary (biological) treatment utilizes microbes to break down waste products;
- **disinfection** inactivates any remaining pathogenic organisms in the liquid stream before discharging;
- **solids handling** includes separating the solids from the liquid stream and dewatering in preparation for disposal.

During the secondary treatment phase, organic solid residuals (sludge) are allowed to settle by gravity and are then processed separately from the liquid stream (solids handling). Sludge from JDTP and ABTP is partially aerobically digested; MTP sludge remains undigested. Two identical Ashbrook belt filter presses located at JDTP and MTP are used to dewater the sludge. MTP also uses a gravity belt thickener before the press to aid in the dewatering process. ABTP transports wet sludge to MTP by tanker truck for dewatering. The resulting sludge cake, or dewatered biosolids, the product currently being shipped out-of-state, will subsequently be sent to the dryer.

2.2 Drying Process Description

Thermal drying is based on the principle of using heat to remove most of the remaining water from dewatered sludge cake via evaporation (Water Environment Federation, 2014). This process reduces

both weight and volume of the final product, while deactivating pathogenic microorganisms that could otherwise be harmful. Dryer systems considered for this project convey dewatered cake to the dryer where the increased temperature evaporates a majority of the water in the cake, resulting in a pelletized product with 90% or greater total solids. This total solids content is required by the US EPA vector attraction reduction standards for land application of biosolids (EPA, 1993; see section 3.0 for more details). In addition, this process does not significantly alter the existing nutrient content of the biosolids, retaining their reuse value (WEF, 2014).

Drying requires a significant amount of thermal energy to be transferred to the dewatered cake to both evaporate the water and bring the solids up to a temperature to deactivate pathogens. While a variety of fuels can be used in most dryers, CBJ has opted for a fuel oil-powered model as natural gas, wood, solar radiation and other fuel sources are either not feasible or available in Juneau.

The CBJ has chosen a direct heat dryer which uses low temperature convection for heat transfer. A general schematic of a direct heat belt dryer is shown in Figure 1. Thermal energy is transferred to a fluid, either hot water or flue gas, heating the air, which comes in contact with the sludge cake, raising its temperature and evaporating water (WEF, 2014). The belt drying system distributes dewatered sludge cake evenly onto the slow moving belt, exposing a large surface area to the heat. Once the solids reach the end of the belt, the drying process is finished and the resulting product can be bagged and stored for use.

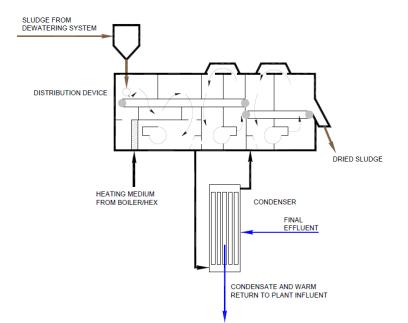


Figure 1. Belt Drying Process Schematic (courtesy of Biosolids Treatment and Disposal Evaluation-Phase II)

2.3 Sludge Production Rates

The CBJ's three wastewater treatment plants produce a combined 3.4 dry tons of cake per day, which currently fill eight to twelve 4,800 gallon shipping containers per week. The dryer will produce roughly 1,150 dry tons of biosolids per year. Once the dryer is installed, sludge from JDTP will be transported as dewatered cake to MTP for drying. ABTP sludge will continue to be transported to MTP and processed as is currently practiced.

2.4 Sludge Characteristics

Sludge is mostly water, ranging from 0.5 to 1 percent solids (about 99 percent water). Once dewatered, the resulting sludge cake at MTP and JDTP contains on average 15 percent solids (85 percent water). The total solids content can vary between 13-17 percent daily depending on the sludge characteristics. Due to the sludge consistency, the dewatered cake is not reused or disposed of locally.

The biosolids dryer will remove most of the remaining water from the sludge cake, significantly reducing its volume and resulting in a 90+ percent solids product in pellet form. The biosolids pellets are easier to transport and store, and more manageable to dispose of. Further, the drying process deactivates pathogens, resulting in a safe product with high nutrient value desirable for reuse.

In general, the elevated levels of macronutrients, micronutrients and organic matter in biosolids make them ideal soil conditioners. Macronutrients, and to a lesser extent micronutrients, are essential for plant growth (PNW, 2007). Macronutrients include nitrogen, phosphorus, and potassium, while micronutrients include copper, boron, zinc and iron. The organic matter present in biosolids acts as a reservoir for these nutrients, increases water infiltration and improves aggregation (National Biosolids Partnership, 2013).

To effectively examine the CBJ's biosolids reuse and disposal options, dewatered cake, influent and effluent water qualities were analyzed for nutrient content and EPA regulated metals. Nutrient values for the dewatered cake from MTP (including ABTP) and JDTP are listed in Table 1. Four sampling events are listed: 2014 results from the Biosolids Treatment and Disposal Evaluation-Phase II, and more recent samplings from spring, summer, and fall of 2016. The samples were collected in the same manner and analyzed by the same laboratory to reduce variability. The results are compared to a general nutrient range for freshly digested biosolids. It should be noted that drying process will not significantly alter the nutrient or metals content of the solids.

Nutrients	CBJ Biosolids ¹								Typical Nutrient	
Primary + Secondary	5/29/2014		4/13/2016		8/5/2016		11/10/2016		Range ²	
All units as %	MTP	JDTP	MTP	JDTP	MTP	JDTP	MTP	JDTP		
Total Solids	16	14	14	13	15	12	12	16		
Total Nitrogen ³	8.1	7.8	8.1	7.0	8.3	7.5	8.1	7.2	3-8	
Phosphorus ⁴	3.6	4.3	3.9	4.3	3.6	5.0	3.9	3.0	3.4-8.0	
Organic N	7.7	7.7	8.0	6.9	8.1	7.5	7.8	7.0		
Magnesium	0.31	0.52	0.34	0.58	0.26	0.59	0.31	0.32	0.4-0.8	
Calcium	0.63	1.2	0.72	0.96	0.74	1.2	0.85	0.52		
Potassium ⁵	0.61	0.89	0.71	0.96	0.67	1.0	0.77	0.52	0.12-0.72	
Organic Matter	90.0	82.4	87.3	81.7	89.0	81.5	84.9	84.1	45-70	

Table 1. Comparison of MTP & JDTP Biosolids Nutrient Analysis to Typical Nutrient Range

1. Complete results attached in Appendix C.

2. Sullivan, D.M., Cogger, C.G., Bary, A.I., 2007

3. N as NO₂+NO₃+Total Kjeldahl Nitrogen

4. P as P_2O_5

5. K as K₂O

CBJ biosolids yielded high results for total nitrogen, potassium and organic matter, making the product an ideal candidate for fertilizers, ground cover and soil remediation. Biosolids pH values, as well as the yields for additional constituents such as sulfur, chloride, iron, manganese, and boron are included in Appendix C. To gain a better understanding of the nutrient contents of the biosolids seasonally, CBJ plans to sample and analyze biosolids quarterly to establish better baseline data.

For land application, the EPA currently regulates biosolids for the nine metals listed in Table 2, excluding molybdenum. In February 1994, the limits for molybdenum were deleted from the Part 503 rule (EPA, 1994), but the EPA is now in the process of reevaluating molybdenum for required monitoring and limits may be reinstated. CBJ therefore also analyzed molybdenum concentrations.

The EPA concentration limits are divided into two categories: the Ceiling Limit and Exceptional Quality (EQ) Limit. The Ceiling Limit is the maximum contaminant concentration for land-applied biosolids. Biosolids meeting the EQ concentration limits can be land-applied and may also be eligible as public-use fertilizer (see Section 3 for more information). For the purposes of this document, pollutants are defined as constituents of interest related to biosolids.

Metal ¹	CBJ Biosolids ²							EPA Limit		
Weta	5/29/2014		4/13/2016		8/5/2016		11/10/2016		40 CFR Part 503 Rule	
(ppm)	MTP	JDTP	MTP	JDTP	MTP	JDTP	ΜΤΡ	JDTP	Ceiling Limit	EQ
Arsenic	4.5	6.9	2.8	4.9	1.9	5.3	2.2	3.9	75	41
Cadmium	< 1.0	1.7	< 1.0	1.1	< 1.0	1.4	< 1.0	1.2	85	39
Chromium	6.3	14	7.7	13	5.9	15	7.4	15		
Copper	280	520	270	490	210	520	240	440	4300	1500
Lead	7.6	20	6.1	19	5.0	17	6.0	19	840	300
Mercury	< 1.0	1.1	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	57	17
Molybdenum ³	2.2	6.6	3.0	5.3	3.3	6.2	2.9	6.0	75	
Nickel	3.7	11	5.4	13	4.2	19	5.3	12	420	420
Selenium	3.2	4.5	2.9	4.9	2.8	5.2	2.9	4.3	100	100
Zinc	420	540	390	580	360	680	330	450	7500	2800

Table 2. Comparison of EPA Pollutant Limits for Land Applied Biosolids to CBJ Biosolids

1. Method detection limit for all constituents is 1 ppm.

2. Complete results attached in Appendix C.

3. Ceiling Limit based on 1994 regulatory information before the contaminant was removed.

CBJ biosolids are well under both the EPA Ceiling and EQ limits. In order to be eligible for public distribution as lawn and garden fertilizer, biosolids must meet additional criteria for pathogen concentration, vector attraction reduction and total solids content (outlined in detail in Section 3). The dryer will enable CBJ biosolids to meet the remaining criteria for public use.

As biosolids are a representation of what comes into the treatment plants, the influent and effluent were sampled at the same time as the 2016 sludge samples for comparison. The results are listed in Table 3.

Constituent	M	тр	JDTP		
Constituent	Influent	Effluent	Influent	Effluent	
	Ν	/letal (<i>ppm</i>)			
Arsenic	ND	ND	ND	ND	
Cadmium	ND	ND	ND	ND	
Chromium	0.002	0.001	0.0017	ND	
Copper	0.080	0.017	0.061	0.011	
Lead	0.0015	ND	0.0024	ND	
Mercury	ND	ND	ND	ND	
Nickel	0.0029	0.0020	0.0035	0.0021	
Selenium	ND	ND	0.0052	0.0069	
Zinc	0.150	0.026	0.100	0.037	
Nutrient (<i>ppm</i>)					
Total Nitrogen	50	24	37	19	
Phosphorus	4.7	0.64	5.1	1.1	

Table 3. CBJ Wastewater Treatment Influent and Effluent Metals and Nutrients Content¹

1. Complete results attached in Appendix C.

Concentrations of the metals and nutrients are overall lower than those in the biosolids because they are more diluted in solution and have less material to bind to; the biosolids particles attract metal compounds, while the high organic matter acts as a reservoir for nutrients.

3.0 Regulatory Information

Requirements for land application and disposal are codified under 40 CFR Part 503 (Part 503 Rule). In addition, State and Local regulations will apply to any disposal or end use option. These regulations were reviewed in detail by CH2M Hill for the CBJ and are available in Appendix A (Section TM1). Depending on the treatment technique and resulting characteristics, the EPA classifies biosolids into two categories: Class B and Class A. This designation distinguishes between the densities of pathogens in the biosolids after treatment. Class A meets stricter pathogen limits than Class B, so they pose less risk to the public and environment and therefore have a greater diversity of uses (EPA, 1994). Exceptional Quality (EQ) biosolids are those that meet the pollutant limits in Table 2, Class A pathogen reduction and one of the first eight vector attraction reduction standards outlined in the CBJ Biosolids Treatment and Disposal Evaluation-Phase II (Appendix A), TM1, Section 4.1. Biosolids meeting the EQ requirements may be land applied without site restrictions (EPA, 2003).

The Alaska Department of Environmental Conservation (ADEC) has adopted by reference the federal regulations established in the Part 503 Rule.

3.1 Review of Land Application Regulations

3.1.1 Application Restrictions

Land application includes the use of biosolids in agriculture, forest and land reclamation, rangeland, or distribution and marketing of any biosolids product that will be applied to land (EPA, 1994). Part 503 prohibits the application of biosolids:

- When it is likely to adversely impact a threatened or endangered species habitat
- If the land is flooded, frozen, or snow-covered
- Within 10 meters of waters of the United States
- At an application rate greater than the established agronomic rate, unless otherwise approved by the permitting agency for a reclamation site

Exceptional quality biosolids are exempt from these site restrictions (EPA, 2003).

In general, any land applied biosolids must meet limits for pathogens, vector attraction reduction (vectors are disease carrying organisms like flies, mosquitoes, rodents, etc.), and pollutants. There are many alternatives for treatment in order to meet these requirements. A complete list of the alternatives and criteria evaluated by CBJ is available in the CBJ Biosolids Treatment and Disposal Evaluation-Phase II (Appendix A), CBJ TM1, Section 4.1. Dryer technology satisfies the Class A biosolids requirements by:

- Meeting fecal coliform (<1000 most probable number (MPN) fecal coliforms per gram total solids) or *Salmonella* bacteria limits (<3 MPN *Salmonella* per 4 grams total solids)
- Reducing the pathogens by applying a regimented thermal heating procedure over time (EPA Alternative 1)
- Drying the biosolids to a total solids content of 90 percent, meeting the required one of ten Vector Attraction Reduction standards

In addition, there are specific record-keeping and reporting requirements for land-applied biosolids, and a permitting process through the state regulators. With the implementation of the dryer, CBJ biosolids will meet the EPA's Class A standards and qualify as Exceptional Quality, thus making them eligible for distribution to the public. The EQ designation will also allow CBJ biosolids to be land applied without site restrictions or the need for a permit, as the ADEC does not require a land application permit for Class A EQ biosolids.

Class A EQ biosolids may be applied to food crops and gardens without restriction (EPA, 1994). Land application of non-EQ, Class A biosolids may need prior site approval if pollutant concentrations exceed EQ limits. The use of land applied Class B biosolids have additional restrictions including that crops may not be harvested (after biosolids application) for at least 30 days and up to 38 months (depending on the crop type) to ensure adequate pathogen reduction (EPA, 1994).

3.1.2 Pollutant Concerns

Pollutant regulations are limited to monitoring the metals listed in Table 2. As the EPA continues to evolve the standards and practices associated with land applying biosolids, testing of additional pollutants, especially pesticide byproducts, may become necessary in the future.

A common concern with land application of biosolids is metals accumulation in soils and subsequent uptake by plants. Metals enter the wastewater stream primarily by industrial inputs, but roadway runoff and landfill waste may be sources as well. It is important to note that not all contaminants behave the same way in soils or have the potential to be taken up by plants: soil pH, organic content and salinity, the type of plant (i.e. some metals accumulate in leaves while others bind in the root zone), exposure pathway and how the metals interact with each other and the existing constituents in the soil all influence whether or not contaminants can be bioavailable in food crops (Cogger, et al, 2000). In

addition, certain people may be more susceptible to metals exposure than others. Based on these differences, the EPA developed a risk assessment model to estimate the current contaminant loading limits for land application analyzing these variables which focuses on exposure pathways such as physical contact or consumption (EPA, 1995). The resulting pollutant limits were ultimately set on the "limiting exposure pathway," or lowest pollutant limit for any of the exposure routes.

In terms of metals sources, the CBJ currently has three small industrial inputs (the hospital, a local business, and the landfill). The regulated pollutant concentrations observed in the CBJ biosolids are well below both the EPA Ceiling and EQ limits (Table 2). Therefore any risk to the public or of long term accumulation is anticipated to be extremely low.

3.1.3 Monitoring and Reporting

Annual reporting is required for any land applied biosolids. In general, reports include all results from monitoring of pollutant concentrations and pathogen levels, a description of operating parameters for pathogen and vector attraction reduction, and certifications that pathogen and vector attraction reductions were achieved (EPA, 1993). In addition, reports must include background information on the amount of sludge generated and the amount going into each disposal or land application practice.

The monitoring and reporting frequency for pollutants, pathogen densities and vector attraction reduction depends on the volume of dry solids produced that will be land applied (EPA, 1994). If all dried CBJ biosolids (estimated 1,150 dry tons) are land applied, the EPA requires monitoring for these parameters once per quarter. After the biosolids have been monitored for two years, the ADEC may reduce the frequency of monitoring (40 CFR 503.16). To further ensure the biosolids are Class A EQ, CBJ will perform regular temperature monitoring throughout the drying process (see Appendix A, TM1, Section 4.1 for more information).

3.2 Review of Disposal Regulations

In regulatory terms, 'disposal' can have different meanings for biosolids. Surface disposal, as described in Subpart C of the Part 503 Rule, generally applies to sludge-only landfills, or monofills (EPA, 1994). It is unlikely that CBJ biosolids will be disposed of in this manner; therefore, for the purposes of this document, disposal refers to co-disposal at municipal solid waste landfills.

Biosolids disposal at a municipal solid waste landfill is regulated under 40 CFR Part 258. In general, biosolids must be non-hazardous and pass the Paint Filter Test (the test used to determine the presence of free liquids in a waste). As CBJ biosolids already test well below EPA metals limits and the dryer will inactivate pathogens and reduce remaining free liquid, they are by definition eligible for disposal locally in the Capitol Disposal Landfill.

4.0 Reuse and Disposal Options

Many qualities and characteristics of heat dried municipal biosolids make it a desirable commercial and residential product: drying retains the nutrient and British thermal unit (Btu) value (or fuel capacity) of the biosolids while making it safe to distribute to the public or dispose of without risk to the environment. CBJ's site visits to the dryer facilities revealed that smaller treatment plants had contracts with a single farm or buyer, while larger facilities allow multiple consumers to either purchase or take

the product for free as it's generated. In all cases, the facilities had no issues offloading the product; the reuse value is well known, so the pellets are a highly sought-after commodity.

While agriculture may not be the primary avenue for reuse in Juneau, there are many other ways to utilize biosolids in the community. Potential options including both beneficial reuse and disposal for CBJ dried biosolids are outlined below.

4.1 Nationwide Biosolids Reuse and Disposal Practices

There are more than 14,000 wastewater treatment plants in the United States treating approximately 32 billion gallons of wastewater each day (EPA, 2016). From that volume, nearly eight million dry tons of biosolids are produced each year. The most recent comprehensive study assessing national trends in biosolids disposal and reuse is 'A National Biosolids Regulation, Quality, End Use & Disposal Survey' by the North East Biosolids and Residuals Association (NEBRA) in 2007. The survey estimates that 55% of the total biosolids in the U.S. were applied to soils for agricultural or land restoration purposes, while the remaining 45% were disposed of in municipal solid waste (MSW) landfills or surface disposal units, or were incinerated.

Agriculture is the most widely employed method for reuse of biosolids, at 74% of the reused fraction. Distribution programs, mainly compost, ranked second among reuse methods (22%), while forestry, reclamation and other uses comprise the remainder.

Of the biosolids that are not beneficially reused, 63% are disposed of in MSW landfills. Thermal oxidation, or incineration, accounts for 33% of all disposed biosolids in the more densely populated states. The remaining small percentage is disposed of in monofills or landfills dedicated for biosolids disposal.

This information is congruent with a similar study performed by the EPA in 1999, which shows 60% of all biosolids in the U.S. being beneficially reused and 40% being disposed of. Of the beneficially reused fraction, 41% were land applied for agriculture. Of the disposed portion, 22% were incinerated and 17% monofilled or landfilled (EPA, 1999).

4.2 Land Application

Class A or EQ biosolids meeting the EPA Part 503 Rule and 18 AAC 60 requirements may be spread on agricultural, forested or disturbed lands as a soil enhancement, or applied as, or in conjunction with, topsoil. Land application of dried biosolids pellets enriches the soil, improves its ability to retain water, improves plant root penetration and promotes plant growth. Additionally, pellets provide a slow-release source of nutrients, and may supplement or replace commercial fertilizers for lawns and gardens, parks, and fields.

In practice, most dried biosolids in the Lower 48 States are used in agriculture because of the fertilizing quality of biosolids. Those benefits overlap into other applications as well: enhanced plant growth increases resistance to water and wind erosion, making biosolids pellets ideal for roadside construction and remediation projects.

All reuse and disposal options covered in this section will be subject to State 18 AAC 60, Article 5, as well as 40 CFR 503, adopted by reference. See Appendix A, TM1, Sections 4.1.1 and 5.1.1-5.1.2 for details. The ADEC only requires a land application permit for biosolids not meeting the Class A EQ requirement. So long as the dryer is functioning well and the quality of the influent remains low in regulated pollutants, the CBJ will not be required to undergo the permit process for any form of land application.

4.2.1 Erosion Control and Topsoil Replacement

A growing market for biosolids is the use in conjunction with erosion control for roadway construction and other development projects. A significant aspect of roadway construction is sediment and erosion control throughout the duration of the project, which often includes the use of topsoil. Heat dried biosolids pellets can be used to enhance topsoil, or used in a filter sock to prevent water from reaching storm drains.

Dried biosolids applied to slopes fill void spaces and limit channelized flow of water, provide a more permeable surface to promote infiltration, and aid in revegetation (EPA, 2012). Biosolids used in a filter sock would replace a silt fence or straw bale barrier, or could be used to prevent flow into storm drains. The filter sock may be filled with biosolids alone or pre-seeded for germination on site. In addition to improved water retention, filter socks have several advantages over traditional sediment control methods (California Department of Transportation, 2009):

- There is no disturbance of the soil surface
- They are easily removed
- Once the project is complete, there is less material to dispose of (only the mesh), as the biosolids may be dispersed on the ground

CBJ Engineering projects (such as water and sewer line replacement, road construction and resurfacing, culvert replacement, and drainage improvements) all require erosion mitigation measures. It is estimated that CBJ Engineering uses 2,000 to 3,000 cubic yards of topsoil annually on such projects, at a cost of roughly \$300,000. Incorporating biosolids with topsoil could reduce the overall contracted purchase, bringing erosion mitigation costs down.

In addition to CBJ construction projects, another potential opportunity is to market the dried biosolids to other construction operations around Juneau. Private companies perform the majority of State of Alaska roadway construction and non-CBJ improvements, and may be able to use the material in a similar manner.

Examples:

Texas Department of Transportation actively utilizes biosolids in roadway construction projects and erosion mitigation. The TDOT created an extensive database for recycled materials, from asphalt to biosolids. The database lists Texas's specifications for reuse, as well as producers and organizations looking to recycle construction materials. This allows contractors to avoid using virgin materials for erosion control and revegetation projects along roadways.

http://www.txdot.gov/inside-txdot/division/support/recycling/speclist.html

Washington State Department of Transportation performed studies showing that erosion control at a road restoration site where biosolids were added was more effective than it was at a similar area with no biosolids addition. The biosolids also enhanced the growth of native plants on the site. http://www.wsdot.wa.gov/Research/Reports/400/491.1.htm

4.2.2 Fertilizer

The dryer technology allows the product to retain the nutrient value of the sludge while eliminating pathogens and undesirable odors. In addition, dried pellets are comprised of highly stable organic materials that decompose slowly, releasing nutrients gradually over time. Class A EQ biosolids used as fertilizer are comparable to commercial fertilizer products (EPA, 1994). As such, they may be applied to home gardens and crops, or in other areas where contact with the public is high, such as parks and golf courses. Heat-dried biosolids are generally applied at agronomic rates for lawn and garden fertilization (Sullivan et. al, 2015). While Juneau may not have traditional agriculture and recreation markets for biosolids, comparable substitutes are available:

- The CBJ Parks and Recreation Department may be able to use biosolids as a soil additive for flowerbeds and other plants grown for the medians and flower pots maintained by CBJ, or perhaps at the Jensen-Olson Arboretum. The Landscaping group uses roughly 10-20 cubic yards of topsoil per year.
- Market to local small agricultural businesses such as:
 - Small specialty farms
 - Landscaping companies
- Market to the public locally and in nearby communities for use on lawns and gardens.

To market the product to the public the biosolids must meet the EPA's Exceptional Quality criteria (see Section 3).

4.2.2.1 Fertilizing Food Crops

Class A EQ biosolids are considered by the EPA and US Department of Agriculture (USDA) to be as safe as any commercial fertilizer because of the extensive treatment the biosolids must undergo to receive the Class A designation (EPA, 1994). Therefore Class A EQ biosolids may be applied to any type of crop, both above and below ground, at the suggested agronomic rate.

Agriculture utilizing biosolids as fertilizer cannot be labeled organic per the National Organic Program, as it classifies biosolids as synthetic in composition (NOP, 1998). However, when compared to raw manure, biosolids have been subject to significantly more regulation, testing, and risk assessment analysis; this scrutiny leads to a more thorough understanding of the product's composition and safety. Before 2015, raw and composted animal manure was not regulated by any federal agency. And to date no risk assessment has ever been performed (FDA, 2015). In 2015, more formal guidelines for pathogen testing and compost treatment techniques were introduced; however, pollutant monitoring and management practices are still not required for animal manure (FDA, 2015). The extensive research and monitoring of biosolids fertilizer has contributed to a more comprehensive understanding of the material and the relative risks associated with their use than what exists for typical manure.

Examples:

Rocky River Wastewater Treatment Plant of Mooresville, NC is one of the dryer facilities the CBJ visited. The dried Class A product is stored in a hopper and sold to local farmers as fertilizer. The facility has had no issues finding a market for reuse. For more information on the facility and CBJ's visit, see Appendix B.

King County Loop Program has been a wildly popular biosolids recycling program used for both land reclamation and fertilizer for over 40 years. A portion of the biosolids is composted with wood chips to create a Class A-EQ product that local businesses then sell to the public as fertilizer. It is used on lawns, flower gardens, grain crops, shrubs and trees and indoor plants. http://www.loopforyoursoil.com/gardens-landscapes/

Utility Services of Alaska, Inc. of Fairbanks distributes composted biosolids from the Golden Heart Utilities Wastewater Treatment Plant for public use. Their Class A EQ product is sold in the summer months in both large and small quantities for home use. The utility regularly sells out of their biosolids supply, effectively reusing the entire volume of wastewater solids. http://www.akwater.com/compost.shtml

4.2.3 Reclamation

The properties that make biosolids a good substitute for topsoil replacement, erosion mitigation and fertilizer apply to general land reclamation as well. Applying biosolids to disturbed areas like mines, wetlands and deforestation sites has been shown to successfully reestablish native plant species. The nutrient content, organic matter and stability of the material provide an excellent growth medium for fragile seedlings.

The Kensington and Greens Creek mines in the Juneau area may be able to use the dried product periodically. Kensington will likely need the bulk of the material once the mine closes, but it is unknown when that will be. Greens Creek uses material more regularly for backfilling, and there is potential for biosolids to be used for that purpose.

Examples:

The American Society of Mining and Reclamation performed a study on a mine tailings plot near Tucson, Arizona. Biosolids were applied to the site and seeded. In less than three years, the vegetative cover had increased from 0 to 77 percent, and the soil microbial populations were well established. http://www.asmr.us/Publications/Conference%20Proceedings/2003/0961-Pepper.pdf

The Pennsylvania State Department of Environmental Protection has been using biosolids on a variety of mine reclamation projects since 1989, especially in coal mining regions. The DEP Biosolids Program works with the municipalities generating the biosolids and private companies to develop and regulate the program.

http://www.dep.state.pa.us/dep/subject/advcoun/minrec/Reclamtn.pdf

4.3 Co-Disposal

While the Part 503 Rule identifies and regulates surface disposal of biosolids in monofills, for the purposes of this document, disposal applies to co-disposal in a municipal solid waste landfill. Co-disposal

is codified under 40 CFR Part 258, and requires far fewer management practices and less monitoring than the Part 503 Rule (see Section 3 for more information).

The Capitol Disposal Landfill, operated by Waste Management in Juneau, requires a regular cover soil of fertilizer mixed with topsoil and additional larger volume of material every few years when sections of the landfill are closed. Capitol Disposal has expressed interest in obtaining the Class A biosolids pellets from CBJ.

Examples:

Ventura County, CA, which has four wastewater treatment facilities serving its citizens, disposes of nearly all biosolids as landfill cover for the district-owned Toland Roald Municipal Solid Waste Landfill. The landfill has been utilizing this method of biosolids disposal since 2009. http://www.tpomag.com/editorial/2010/12/closer-to-home

4.4 Alternative Energy Source

Biosolids have the potential to be a valuable source of energy. The organic (volatile) matter in biosolids makes up the caloric energy content. Unprocessed biosolids typically average 8,000 Btu per pound on a dry weight basis, similar to the energy content of low-grade coal (NACWA, 2010). In 2014, CBJ dewatered biosolids were tested for Btu value and volatile solids. The results (available in Appendix A, TM2, Section 2.1) show JDTP and MTP biosolids to have between 7500 and 8455 Btu/lb and between 73.1% and 80.8% volatile organic matter. These caloric energy values are very promising.

Using pellets to replace coal and other fossil fuels is still an emerging technology in the United States; most renewable energy projects for the wastewater industry focus on biogas (methane) produced during the anaerobic digestion process. However, a few studies have shown dried pellets can be used in boilers in place of fossil fuels with little change in performance. In addition, some research shows that dried biosolids may be used in conjunction with wood in pellet stoves. There is the potential for the CBJ Wastewater Treatment plants to convert their current fossil fuel boiler systems to biomass-fueled boiler systems. Biomass boilers, which most commonly use wood pellets, are already installed in several larger buildings around Southeast Alaska. If pursued, CBJ's pellet boiler system would likely use a combination of wood pellets and biosolids pellets.

A minor permit for air quality would be required to burn biosolids as fuel in CBJ Wastewater boilers. There are currently no regulations restricting the use of biosolids in personal home pellet stoves.

Examples:

The Colorado Springs Utilities conducted a study evaluating the feasibility of using dried biosolids pellets for power generation at their facilities. Co-combusting the pellets with coal in their facilities had a negligible impact on power generation capacity or general boiler operation; see References Section (Adams et al, 2011) for cited study.

A recent study tested the use of biosolids in pellet stoves. When combined with another carbon fuel source, such as wood chips, biosolids were able to sustain combustion in home pellet stoves. A mixture of 10% biosolids and 90% wood pellets was used with no change in combustion efficiency from other fuel sources. In addition, no gas emissions were observed. It should be noted that the volatile matter for

these biosolids was quite low, at 45%, as compared to the CBJ projected percentages. See References Section (Roy et al, 2011) for cited study.

5.0 End Use Ranking and Discussion

A summary of the reuse options discussed in the previous section is listed below with explanations, in order of most feasible (with little to no further study):

- 1. Landfill Cover-Capitol Disposal is prepared to take most of the dried pellets year-round provided the material is Class A. The regular use of the material makes this solution the most shelf-ready candidate for end use.
- Erosion Control and Topsoil Enhancement-The CBJ Departments can readily use this material in construction projects and topsoil for landscaping, though in small quantities on a seasonal basis. In addition, there is the opportunity to market to organizations outside the CBJ for similar needs.
- **3.** Fertilizer (CBJ Parks and Rec)-The CBJ Parks and Recreation Department, Landscaping Division, can utilize a small amount of this material on a seasonal basis as a soil additive or fertilizer in landscaping projects.
- **4.** Fertilizer (Public and Business)-Marketing the product to businesses and the public for residential use is not a guaranteed method of reuse. While other utilities reviewed in this document have no trouble distributing to the public, Juneau's small size and isolation could make it more difficult to initially market and distribute.
- **5.** Alternative Energy Source-More research is needed to analyze the feasibility of using dried pellets as a fuel source and identify the regulatory process to classify biosolids as a fuel source.
- **6. Reclamation**-One of the local mining operations has expressed interest in using the dried pellet material for reclamation activities, but will not need it with any regularity.

This list and each option's viability may change with further discussion and research. There are numerous, more novel reuse methods demonstrated around the country and the world, including incorporating the dried product into brick and glass aggregate, green roofs, and stormwater filtration systems (Vasileski, 2007). There also remains the potential to transport the material to other communities around Alaska for the uses described above.

6.0 Conclusions and Recommendations

The CBJ is developing the strategic vision and mission for its final biosolids management program. The dryer will be able to treat all wastewater biosolids to a Class A or Exceptional Quality standard, and should be able to maintain compliance with the regulatory requirements associated with the product's designation. CBJ will continue to monitor and analyze its untreated biosolids prior to the construction of the dryer to obtain a better year-round understanding of their characteristics and changes that may be influenced by weather, tourism and other factors.

An analysis of the end use markets has shown that there are several viable outlets for the City's biosolids. The Class A EQ designation allows for this diverse range of end uses, from simple reuse as cover material at the landfill to fertilizer on community-wide sites and projects to use as a sustainable fuel source, all of which are ultimately aimed to benefit the community.

7.0 References

Adams, D., Sperl, J., Daniel, J., Cook, T., Chipman, S., Carr, S., McIntosh, T., Charnas, C., Sulzen, L., Mech, P., Brown, E., Sirois, R. (2011). *Biosolids Renewable Energy Project-Power Generation with Biosolids*. Paper presented at Water Environment Federation Residuals and Biosolids Conference: Adapting Residuals Management to a Changing Climate. Sacramento, CA. Water Environment Federation.

California Department of Transportation. (2009). *Compost and Water Quality Technical Memorandum*. CTSW-TM-07-172.51.2. Sacramento, CA, Division of Environmental Analysis.

Cogger, C.G., Sullivan, D.M., Henry, C.L., Dorsey, K.P. (2000). *Biosolids Management Guidelines for Washington State*. Publication # 93-80. Olympia, WA: Washington State Department of Ecology and Solid Waste & Financial Assistance Program.

Environmental Protection Agency. (2016). *Clean Watersheds Survey 2012 Report to Congress*. EPA-830-R-15005.

Environmental Protection Agency. (2012). *Stormwater Best Management Practice: Compost Blankets*. EPA 833-F-11-007. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water.

Environmental Protection Agency. (2003). *Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge*. EPA 625-R-92-013. Cincinnati, OH.: U.S. Environmental Protection Agency, Office of Research and Development.

Environmental Protection Agency. (1999). *Biosolids Generation, Use and Disposal in the United States*. EPA 530-R-99-009. Washington, D.C.: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

Environmental Protection Agency. (1995). *A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule*. EPA-832-B-93-005. Washington, D.C.: U.S. Environmental Protection Agency, Office of Wastewater Management.

Environmental Protection Agency. (1994). *A Plain English Guide to the EPA Part 503 Rule*. EPA-832-R-03-003. Washington, D.C.: U.S. Environmental Protection Agency, Office of Wastewater Management.

Environmental Protection Agency. (1994). *Land Application of Sewage Sludge: A Guide for Land Appliers on the Requirements of the Federal Standards for the Use or Disposal of Sewage Sludge, 40 CFR Part 503.* EPA-831-B-93-002b. Washington, D.C.: U.S. Environmental Protection Agency, Office of Enforcement and Compliance.

Environmental Protection Agency. (1993). *Preparing Sewage Sludge for Land Application or Surface Disposal*. EPA 831B-93-002A. Washington, D.C: U.S. Environmental Protection Agency, Office of Water.

Food and Drug Administration. (2015). Key Requirements: Final Rule on Produce Safety. [Fact Sheet]

Food and Drug Administration. (2016). Frequently Asked Questions on FSMA. Retrieved from <u>http://www.fda.gov</u>

National Association of Clean Water Agencies. (2010). *Renewable Energy Resources: Banking on Biosolids*. Washington, D.C.: s.n.

National Association of Clean Water Agencies. (2006.) *Biosolids Management: Options, Opportunities & Challenges*. Washington, D.C.

National Biosolids Partnership. (2013). Potential Uses of Biosolids [Fact sheet].

Pepper, I.L, Brooks, J.P., Gerba, C.P. (2008). *Sustainability of Land Application of Class B Biosolids*. Journal of Environmental Quality, 37 (5), 58-67.

Roy, M.M, Dutta, A., Corscadden, K., Havard, P. (2011). *Co-combustion of Biosolids with Wood Pellets in a Wood Pellet Stove*. International Journal of Engineering and Technology, 11 (3), 7-15.

Standards For the Use or Disposal of Sewage Sludge, 40 CFR 503 (1993).

Sullivan, D.M., Cogger, C.G., Bary, A.I. (2007). *Fertilizing with Biosolids*. Pacific Northwest Extension.

United States Food and Drug Administration, National Organic Program, 7 CFR §205.203 (1998).

Vasileski, G. (2007). *Beneficial Uses of Municipal Wastewater Residuals-Biosolids*. Canadian Water and Wastewater Association, Ottawa, ON: s.n.

Water Environment Federation. (2014). Thermal Drying of Wastewater Solids [Fact sheet].

Appendix A

CBJ Biosolids Treatment and Disposal Evaluation Phase II

Final Report

Biosolids Treatment and Disposal Evaluation – Phase II

City and Borough of Juneau

September, 2014

949 East 36th Avenue Suite 500 Anchorage, AK 99508

Section

Page

Executive Summary

1.1	Project Goals and Objectives Accomplished	1
	Design and Evaluation Criteria	
	Results of Alternatives Evaluation	
1.4	Recommended Operating Strategy	6
1.5	Recommended Project Delivery Method	7

Tables

ES-1	Design Criteria for CBJ's Solids Management Alternatives	.2
ES-2	Non-Monetary Criteria and Weightings Used in Alternatives Evaluation	.3
ES-3	Net Present Value (NPV) Cost Estimates of the Alternatives for MWWTP Facility Location	5
ES-4	Net Present Value (NPV) Cost Estimates of the Alternatives for JDWWTP Facility Location	5
ES-5	Anticipated Project Schedule under Option 1: Construction of Drying and Heat-Recovery	
	Systems in a Single Capital Project	.7
ES-6	Anticipated Project Schedule under Option 2: Construction of Drying and Heat-Recovery	
	Systems in a Single Capital Project using Progressive Design-Build Delivery Approach	8

Figures

ES-1	Stacked Bar Chart Display of Non-monetary Criteria Rankings of Alternatives 1-44
ES-2	Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for MWWTP Facility Location.5
ES-3	Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for JDWWTP Facility Location.6

TM 1 - Data Review & Regulatory Conditions and Outlook

Introduction	
Summary of Information Received to Date	
Review of Solids Production Data	
Review of Solids Characteristics and Analytical Results	5
Review of Pertinent Federal Regulations	6
4.1.1 40 CFR Part 503 Subpart B: Land Application	7
4.1.2 40 CFR Part 503 Subpart C: Surface Disposal	8
4.1.3 40 CFR Part 503 Subpart D: Pathogen and Vector Attractic	n Reduction9
4.1.4 40 CFR Part 503 Subpart E: Incineration	
Predicted Changes to Federal Part 503 Regulation and their Poten	tial Impacts11
Review of Pertinent State and Local Regulations	
5.1.1 State Disposal Regulations	
5.1.4 Local Requirements:	
Suggested Design Criteria for Biosolids Handling Facility	
Summary and Conclusions	
Path Forward	
	 4.1.3 40 CFR Part 503 Subpart D: Pathogen and Vector Attraction 4.1.4 40 CFR Part 503 Subpart E: Incineration Predicted Changes to Federal Part 503 Regulation and their Poten Review of Pertinent State and Local Regulations 5.1.1 State Disposal Regulations 5.1.2 End Uses 5.1.3 State Air Regulations 5.1.4 Local Requirements: Suggested Design Criteria for Biosolids Handling Facility

Tables

1	Summary of Documents and Historical Data provided by CBJ to CH2M HILL related to Biosolids
	Study
2	2013 Solids Production from CBJ's MWWTP and JDWWTP, plus Combined Totals
3	Comparison of EPA Part 503 Pollutant Ceiling Limits and "Exceptional Quality" Pollutant
	Concentration Limits with Results of Recent Solids Analyses from JDWWTP and MWWTP
4	Results of Other Constituents of Interest from Recent Solids Analyses from JDWWTP and MWWTP . 6
5	Pathogen Reduction Requirements from 40 CFR Part 503 Rule
6	Minor Air Permit Limits
7	Proposed General Design Criteria for Purpose of Developing Solids Management Alternatives 15

Figures

1	Total Monthly Solids Production from CBJ's MWWWTP and JDWWTP in 2013
2	Evaluation Criteria and Weightings to be Used in Biosolids Alternatives Analysis

TM 2 - Alternatives Evaluation and Results

1.1	Introdu	ction	1			
2.1	Solids L	oading Projections, Characteristics, and Design Conditions	1			
3.1	Descrip	tion of Alternatives	3			
	3.1.1	Alternative 1 - Continuing the Transport and Landfilling of Dewatered Biosolids	4			
	3.1.2	Alternative 2 - Thermal Drying Technology	5			
	3.1.3	Alternative 3 - Thermal Drying followed by Incineration for Heat Recovery	6			
	3.1.4	Alternative 4 – New Fluidized Bed Incinerator	9			
4.1	Alternatives Evaluation					
	4.1.1	Review of Evaluation Criteria, Weighting, and Ranking	9			
	4.1.2	Carbon Footprint Estimates and Comparisons between Alternatives	10			
	4.1.3	Non-Monetary Comparison of Alternatives	12			
	4.1.4	Methodology for Cost Estimation	12			
	4.1.5	Cost Comparison of Alternatives	14			
	4.1.6	Benefit-cost Comparison of Alternatives	14			
5.1	Recom	mended Alternative				

Tables

1	Proposed General Design Criteria for Purpose of Developing Solids Management Alternatives	2
2	Selected Results from Ultimate & Proximate Analysis of Solids from JDWWTP and MWWTP	3
3	Summary of CBJ Biosolids Disposal Amounts in Wet Tons (WT) in Calendar Year (CY) 2013	5
4	Results of Developing and Weighting Non-Monetary Criteria Used in Alternatives Evaluation	10
5	Estimated Annual Greenhouse Gas (GHG) Emissions (Carbon Footprint) of Each Alternative	11
6	Results of Developing and Weighting Non-Monetary Criteria Used in Alternatives Evaluation	12
7	CBJ Reference Unit Costs	13
8	Capital Cost Breakdown of Alternatives for MWWTP Facility Location	16
9	Capital Cost Breakdown of Alternatives for JDWWTP Facility Location	17
10	Annual O&M Cost Breakdown of Alternatives for MWWTP Facility Location	18
11	Annual O&M Cost Breakdown of Alternatives for JDWWTP Facility Location	18
12	Net Present Value (NPV) Cost Estimates of the Alternatives for MWWTP Facility Location	19
13	Net Present Value (NPV) Cost Estimates of the Alternatives for JDWWTP Facility Location	19
14	Benefit-cost Score of Alternatives for MWWTP Location	20
15	Benefit-cost Score of Alternatives for JDWWTP Location	20

Figures

1	Belt Drying Process Schematic	7
2	Dried Biosolids Product from a Belt Dryer (courtesy of Kruger)	
3	BioCon Dryer and Energy Recovery System (BioCon-ERS) Process	8
4	BioCon-ERS Incinerator Furnace	8
5	Typical Fluidized Bed Incinerator (FBI) and Accessories	9
6	Stacked Bar Chart Display of Non-monetary Criteria Rankings of Alternatives 1-4	.13
7	Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for	
	MWWTP Facility Location	.19
8	Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for	
	JDWWTP Facility Location	.20
9	Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for MWWTP Facility	
	Location	.21
10	Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for JDWWTP Facility	
	Location	.21

TM 3 - Long Term Plan and Operating Strategies

1.1	Introd	luction	1
2.1	Recon	nmended Alternative	1
		Results of Alternative Evaluation Workshop	
		Description of Recommended Alternative	
		Planning and Siting Recommendations	
3.1		nmended Operating Strategies	
		Operating Strategies at Similar Facilities	
		Recommended Operating Strategies for CBJ	
4.1		t Phasing and Scheduling Options	
	-	Anticipated Project Schedules under Two Delivery Options	
	4.1.2	Recommended Next Steps	

Tables

1	Advantages/Disadvantages of Biosolids Facility Location	7
2	Summary of Operating Belt Drying Facilities in the USA (dryers manufactured by Kruger)	
3	Anticipated Project Schedule under Option 1: Construction of Drying and Heat-Recovery	
	Systems in a Single Capital Project	12
4	Anticipated Project Schedule under Option 2: Construction of Drying and Heat-Recovery	
	Systems in a Single Capital Project using Progressive Design-Build Delivery Approach	13

Figures

1	Benefit-Cost Scores of Alternatives 1-4 with Biosolids Management Facility at MWWTP	2
2	Benefit-Cost Scores of Alternatives 1-4 with Biosolids Management Facility at JDWWTP	2
3	Comparison of NPW (Capital and O&M Cost Components) among Alternatives 1-4 with Biosolids	
	Management Facility at MWWTP	3
4	Comparison of NPW (Capital and O&M Cost Components) among Alternatives 1-4 with Biosolids	
	Management Facility at JDWWTP	3
5	Belt Dryer Schematic Diagram	5
6	Simplified schematic Diagram of Alternative 3 – Thermal Drying with Energy Recovery Furnace,	
	Based on Kruger BioCon-ERS Model	6
7	Potential Location of Thermal Dryer with Energy Recovery Furnace at the JDWWTP Site	8
8	Potential Location of Thermal Dryer with Energy Recovery Furnace at the MWWTP Site	9
9	General Arrangement Drawing of Thermal Dryer with Energy Recovery Furnace	10

Biosolids Treatment and Disposal Evaluation – Phase II Executive Summary

PREPARED FOR: City/Borough of Juneau (CBJ), Alaska PREPARED BY: CH2M HILL

DATE: September 2, 2014

1.1 Project Goals and Objectives Accomplished

The City/Borough of Juneau's (CBJ's) Biosolids Treatment and Disposal Evaluation has built upon recent investigations by CBJ into possible disposal and treatment alternatives for the waste biosolids produced at CBJ's Juneau-Douglas Wastewater Treatment Plant (JDWWTP) and Mendenhall Wastewater Treatment Plant (MWWTP). The following objectives were completed as part of this project and are described in the three Technical Memorandums (TMs) that form the body of this report:

- 1. Pertinent data and information provided by CBJ related to recent and current biosolids production and disposal practices were reviewed and summarized (TM1).
- 2. Federal, state, and local regulations, were also reviewed and summarized, providing a regulatory outlook for CBJ's future biosolids use or disposal options (TM1).
- 3. Design criteria were developed for the analysis of biosolids management alternatives for CBJ, based on historical records and population projections (TM2).
- 4. Evaluation criteria for the alternatives evaluation were developed and weighted by the project team (TM2).
- 5. Potential alternatives for long-term biosolids management evaluation were screened and narrowed down to three new alternatives, in addition to the alternative of continuing current biosolids management practices, for more detailed evaluation (TM2).
- 6. The results of the alternatives evaluation were reviewed and discussed in a project workshop, and then one alternative was selected for implementation: a belt-driven thermal dryer with energy-recovery furnace (TM2).
- 7. An implementation plan with recommended operating strategies, delivery options, and schedules was developed (TM3).

1.2 Design and Evaluation Criteria

Based on a review of historical conditions and projections of future conditions for the CBJ, Table ES-1 presents design solids-loading criteria developed for biosolids management facilities at the JDWWTP and the MWWTP, (which includes the Auke Bay WWTP solids), and combined loadings from both facilities. The units describing biosolids quantity are in dry tons per day (DT/day) and wet tons per day (WT/day). The projected loadings are based on historical trends summarized in the Phase 1 report, supplemented by data from calendar year 2013. Population projections do not predict any significant growth of the CBJ's service area in the next 20 years. CBJ decided, however, to add 10% reserve capacity to current solids loading estimates to account for the potential of increased industrial activity and population growth in the future.

Belt filter presses at both WWTPs produced an average of 15.8% solids in 2013, but WWTP production records show that dewatered cake solids range from 14% to 17% solids on a day-to-day basis. For sizing of future biosolids handling facilities, it is conservatively assumed that dewatering facilities at both WWTPs will produce 15% Total Solids (TS). If the dewatering operations can produce solids of higher TS content than 15% TS in the future, then the future biosolids handling facilities will have additional reserve capacity, which will provide for more redundancy and flexibility in operations.

TABLE ES-1 Design Criteria for CBJ's Solids Management Alternatives

Design Criterion	JDWWTP Solids	MWWTP Solids	Combined Solids	Remarks
Average Annual Solids Loading	0.8 DT/day	2.6 DT/day	3.4 DT/day	Annual average loadings are used for estimating O&M costs
Average Annual Solids Concentration	15% TS	15% TS	15% TS	It is assumed that existing solids dewatering capability can be maintained, but not improved. Even though 15.8% TS was achieved in 2013, 15% TS is assumed for conservatism in design.
Average Annual Solids Loading, WT/day	5.3 WT/day	17.3 WT/day	22.6 WT/day	This is the mathematical result of dry solids loadings divided by %solids fraction.
Maximum Month/Average Day Peaking Factor	1.5	1.3	1.35	Slightly more conservative than existing peak factors.
Maximum Month Solids Loading, DT/day	1.2 DT/day	3.4 DT/day	4.6 DT/day	Monthly maximum daily values are assumed for design with sufficient liquid storage capacity to handle daily and weekly peak loadings.
Maximum Month Solids Loading, WT/day	8.0 WT/day	22.7 WT/day	30.7 WT/day	The maximum month, average daily biosolids production rates in WT/day govern sizing of drying and incineration equipment.

Biosolids samples taken during the study indicate that levels of metals are safe and well below EPA limits. Odors and pathogen indicators typically found in untreated biosolids can be reduced by appropriate treatment. There are a number of technologies that can convert biosolids to topsoil amendments or low-grade fertilizers, but there does not appear to be sufficient market demand in Juneau to use these products, so CBJ's primary drivers for biosolids management are volume reduction to reduce disposal costs and odor reduction to minimize impacts on the public.

The Juneau area poses some unique geographical challenges that point toward a general need for more established and reliable technologies. These challenges include a relatively remote location, limited transportation options that may result in delayed shipments for equipment, an unpredictable climate, and lack of specialized support services. Considering these factors, project team members agreed that the responsible choice for CBJ is to settle on an established or innovative technology (according to the Environmental Protection Agency's [EPA's] definitions for established, innovative, and embryonic technologies) that can demonstrate a successful track record of operating facilities.

The project team agreed upon the following three governing principles for selecting a biosolids management alternative:

- 1. Need Class A pathogen reduction to create an "exceptional quality" biosolids
- 2. Need to have multiple options for end use to minimize risk of disposal
- 3. Need to maximize volume reduction to the extent possible.

Based on these governing principals, the following three alternatives were selected for more detailed analysis:

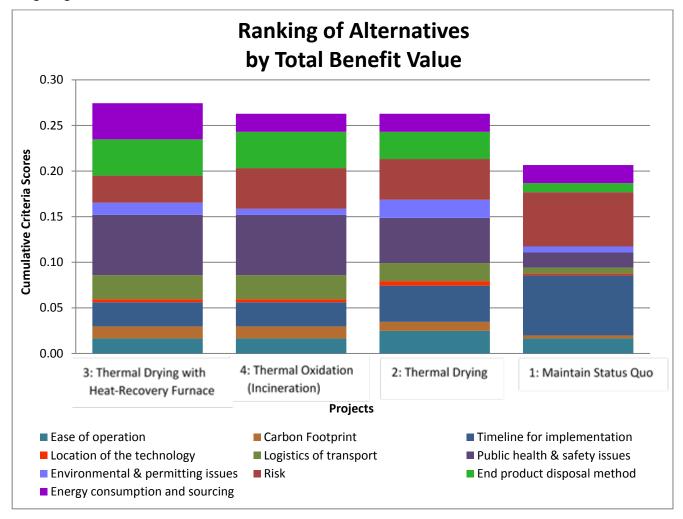
- 1. Thermal dryer with production of Class A biosolids
- 2. Dryer with energy-recovery furnace
- 3. Stand-alone incinerator (fluidized bed type)

Table ES-2 shows the evaluation criteria and weightings developed by the project team for alternatives analysis. The criteria weights were assigned based on a prioritization exercise completed by the team at Workshop 1 and refined in Workshop 2. The alternatives were then scored against those criteria based on a high probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (low score).

	etary criteria and v	Veignungs	
Criteria No.	Evaluation Criteria	Criteria Weights	Criteria Descriptions
1	Ease of operation	9.1	Relative ease of operating the technologies involved in each alternative, compared to existing operations. Technologies considered easier to operate receive higher score.
2	Carbon footprint	3.6	An estimate of the amount of greenhouse gas (GHG) emissions that would be emitted as a result of implementing each of the alternatives. Lower GHG emissions receive higher score
3	Timeline for implementation	14.5	Estimated time required to implement each alternative, relative to other alternatives. Alternatives with faster timeline receive higher score.
4	Location of the technology	1.8	Flexibility to locate the facilities involved in each alternative at any one of three possible locations (JDWWTP, MWWTP, and Capitol Landfill) relative to other alternatives. Alternatives with greater location flexibility receive higher score.
5	Logistics of transport	7.3	Ease or difficulty in which end product from each alternative (dewatered cake, dried solids, or ash) can be transported, relative to other alternatives. Alternatives with end products considered easier to transport receive higher score.
6	Public health & safety issues	18.2	Possibility of each alternative to create public health or safety issues relative to the other alternatives. Greater possibility of creating issues results in lower score.
7	Environmental & permitting issues	7.3	Likelihood of each alternative to encounter environmental or permitting problems, relative to the other alternatives. Higher likelihood of problems results in lower score.
8	Risk	16.4	The amount of risk associated with implementing each alternative, from the perspectives of new technology, process complexity, and possibility of failure during operations, relative to the other alternatives. Alternatives with higher risk receive lower score.
9	End product disposal method	10.9	Likelihood of each alternative to experience ease or difficulty with end product disposal. Greater anticipated difficulty results in lower score.
10	Energy consumption & sourcing	10.9	Estimated amount of energy and source of energy required by each alternative compared with the other alternatives. Higher score to alternatives with lower energy requirements and higher scores to alternatives that can create energy or use local energy sources.

TABLE ES-2

1.3 Results of Alternatives Evaluation


100.0

The alternatives for biosolids management selected by the CBJ for detailed evaluation were:

- 1. Continuation of the current practice of shipping dewatered biosolids from the JDWWTP and the MWWTP by barge to Oregon for landfill disposal (also known as the "status quo" or "base case" alternative).
- 2. Thermal drying of biosolids at a central facility with local disposal or marketing of the dried, Class A biosolids product.
- 3. Thermal drying of biosolids followed by combustion of the biosolids in a furnace to recover heat that is then recirculated to the biosolids drying process, thus reducing the amount of purchased fuel.
- 4. Thermal combustion (incineration) of the biosolids in a new fluidized-bed incinerator that recovers heat from the combusted biosolids to aid in evaporation and reduce the amount of purchased fuel.

Total Weight

Figure ES-1 presents in bar chart format the results of the non-monetary evaluation using the criteria and weightings described above:

FIGURE ES-1

Stacked Bar Chart Display of Non-monetary Criteria Rankings of Alternatives 1-4

As shown in Figure ES-1, Alternative 3 (Dryer and Heat-Recovery Furnace), ranked highest in non-monetary terms. Alternative 2 (Thermal Drying) and Alternative 4 (Incineration) tied for next highest ranking. Alternative 1 (Continued Status Quo of Landfill Disposal) ranked lowest in non-monetary terms.

Cost estimates including capital costs, annual operation and maintenance (O&M) costs, and net present value, were also developed. All costs were derived using the same level of estimating accuracy so the cost estimates for the four alternatives are comparable. Actual construction costs may differ from the estimates presented, depending on specific design requirements and the economic climate at the time a project is bid. The American Association of Cost Engineers (AACE) has developed levels of accuracy for various stages of construction cost estimation. The estimates produced for the current comparison are Class 5, with a corresponding project definition level of 0-2% and expected level of accuracy of 20-50% below and 30-100% above the cost given.

The cost estimates for each alternative varied depending on whether biosolids processing is centralized at the MWWTP or JDWWTP, as summarized in Tables ES-3 and ES-4.

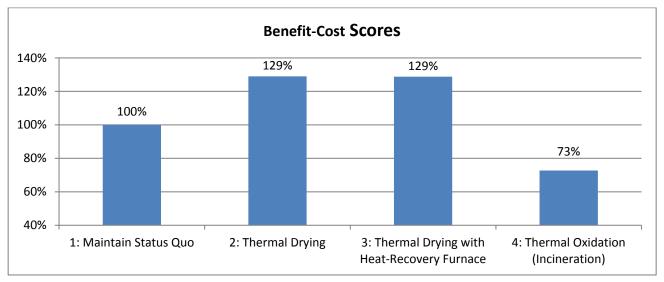
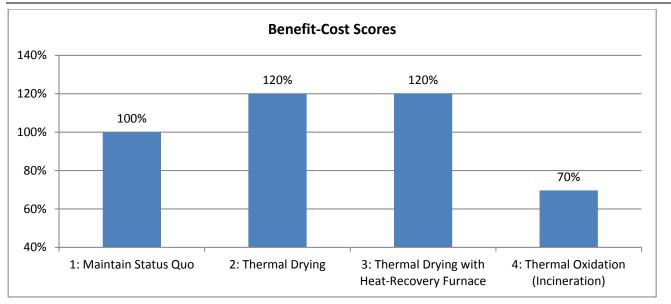

Alternative Number	Name of Alternative	NPV of Capital Cost	NPV of Annual O&M Costs	Total NPV
1	Maintain Status Quo	\$2,700,000	\$32,200,000	\$34,900,000
2	Thermal Drying	\$18,300,000	\$16,100,000	\$34,400,000
3	Thermal Drying with Heat-Recovery Furnace	\$26,600,000	\$9,400,000	\$36,000,000
4	Thermal Oxidation (Incineration)	\$50,200,000	\$10,900,000	\$61,100,000

TABLE ES-3 Net Present Value (NPV) Cost Estimates of the Alternatives for MWWTP Facility Location

TABLE ES-4 Net Present Value (NPV) Cost Estimates of the Alternatives for JDWWTP Facility Location

Alternative Number	Name of Alternative	NPV of Capital Cost	NPV of Annual O&M Costs	Total NPV
1	Maintain Status Quo	\$2,700,000	\$32,200,000	\$34,900,000
2	Thermal Drying	\$19,500,000	\$17,500,000	\$37,000,000
3	Thermal Drying with Heat-Recovery Furnace	\$27,900,000	\$10,700,000	\$38,600,000
4	Thermal Oxidation (Incineration)	\$51,500,000	\$12,300,000	\$63,800,000


The non-monetary criteria were then combined with the total costs to produce a Benefit-Cost score. In this evaluation, following the traditional procedure for Benefit/Cost evaluations, the total non-monetary scores were assigned a 50% weighting and the NPV scores were assigned the remaining 50% weighting in computing the Benefit/Cost scores of each alternative. As with the O&M and capital cost comparisons, each of the new alternatives is shown as having a higher or lower benefit-cost score than the Status Quo alternative, which is assigned a 100% baseline score.

Figures ES-2 and ES-3 depict the relative Benefit/Cost scores of each alternative in bar chart format.

FIGURE ES-2

Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for MWWTP Facility Location

FIGURE ES-3 Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for JDWWTP Facility Location

If CBJ has sufficient capital funds to pay for the slightly higher capital cost of Alternative 3, then substantial annual savings can be achieved by reduction of O&M costs associated with Alternative 3. Also, if an opportunity exists to defray the capital costs through grant funding, Alternative 3 would be the most desirable alternative to implement in monetary terms, because the investment in higher capital for Alternative 3 would substantially reduce CBJ's annual O&M costs. Alternative 3 also scored highest in the non-monetary evaluation; therefore, **Alternative 3** – Thermal Drying with Heat-Recovery Furnace (energy recovery system) is the recommended alternative for implementation.

1.4 Recommended Operating Strategy

There are two potential site locations for CBJ's biosolids drying facility, the MWWTP or the JDWWTP. The MWWTP produces almost 80% of CBJ's biosolids, so would be the logical choice for siting a central biosolids management facility to reduce the extent of biosolids hauling. However, the site at MWWTP is more constrained, and the Mendenhall Valley where the MWWTP is located is currently a non-attainment area for air emissions, which would likely increase the cost of permitting and air-emissions technology at the MWWTP. The JDWWTP site has more available space and a wider buffer from its adjacent properties, and is not as sensitive as the MWWTP site with respect to its air-permitting requirements.

Based on CH2M HILL's recent phone and email survey of other belt dryers operating in the USA, it is recommended that CBJ plan to operate its belt dryer and heat-recovery furnace around-the-clock when it has sufficient solids inventory. Both the JDWWTP and MWWTP appear to have sufficient pre-dewatering solids storage capacity, although the JDWWTP has more storage volume in its aerobic digestion basin than the MWWTP has in its settled-solids holding tank.

It does not appear that CBJ would need to have staff onsite around-the-clock to oversee operation of a drying/heat recovery facility. Similar to several other belt drying facilities in the U.S., unattended operation of the dewatering and drying systems would be possible, provided that system monitoring can be done remotely via internet or telephone. Control systems for CBJ's thermal drying facilities would need to be designed with special features for remote operation.

Transport of dewatered biosolids will be required from one of the WWTPs to the other WWTP where the thermal drying facilities are located. It is recommended that truck hauling be done at night to decrease hauling time, and minimize the potential for traffic problems and odor complaints.

1.5 Recommended Project Delivery Method

It is recommended that the project be implemented and phased under one of the following two methods:

- 1. Design of belt drying system and heat-recovery furnace in a single capital project using a traditional designbid-build approach.
- 2. Construction of drying and heat-recovery systems in a single capital project using progressive design-build delivery approach

Table ES-5 presents a general project schedule under the Option 1 scenario above, in which the belt drying system and heat-recovery system would be designed and installed together as part of the same capital project.

TABLE ES-5 Anticipated Project Schedule under Option 1: Construction of Drying and Heat-Recovery Systems in a Single Capital Project

	Year	2014	2015		2016				2017→				
Activity	Quarter	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd
Preliminary Engineering	·												
Project Funding*													
Design & Permitting													
Dryer/Furnace Procurement & Submittals													
Dryer/Furnace Manufacturing	& Delivery*												
Bidding and Construction**													
Startup**													
Full-scale Operations													

*The dryer/furnace manufacturing/deliver and construction schedule are tied to project funding availability.

**Construction phase ends at substantial completion; final completion would occur after successful startup.

It may be possible to accelerate the schedules shown in Table ES-5 by up to six months using an alternative delivery method such as progressive design-build or construction management at-risk. Under progressive design-build delivery, for example, the project schedule would be compressed in the design and construction phases, since those phases would be delivered by the Design-Build Contractor. An anticipated project schedule under progressive design-build delivery is shown in Table ES-6.

There are a number of challenges related to utilizing an alternative approach other than traditional design-bidbuild in Alaska. Very few if any public utilities in Alaska have used alternative delivery methods on projects of significant size. Also, a Certificate to Construct is required prior to beginning construction of a water or wastewater facility in Alaska. To get the Certificate to Construct, design documents must be submitted to ADEC for plan review at the 95% completion level. Plan review times by ADEC are not predictable and with a relatively new technology, could be protracted.

Even though Table ES-6 shows the potential for saving 3-6 months on the project schedule with an alternative delivery approach, the time requirement for ADEC review of 95% design documents prior to construction may negate any potential time savings under a design-build approach.

TABLE ES-6

8

Anticipated Project Schedule under Option 2: Construction of Drying and Heat-Recovery Systems in a Single Capital Project using Progressive Design-Build Delivery Approach

	Year	2014	14 2015				20		2017→			
Activity	Quarter	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd
Preliminary Engineering												
Project Funding & DB Contractor Selection*												
Design, Permitting, and Construction**												
Dryer/Furnace Procurement & Submittals												
Dryer/Furnace Manufacturing & Delivery*												
Startup**												
Full-scale Operations												

*The dryer/furnace manufacturing/deliver and construction schedule are tied to project funding availability.

**Construction phase ends at substantial completion; final completion would occur after successful startup.

Therefore, it is recommended that CBJ plan to implement the project using the more traditional, design-bid-build approach as shown in Table ES-5, which is more predictable and will reduce the possibility of unexpected delays. Preliminary engineering would need to get underway in the last quarter of 2014 and be completed in the first quarter of 2015, and project funding would need to be identified by early 2015, for the project to proceed on schedule and begin construction by early 2016, then have an operational biosolids-drying facility by late 2016 or early 2017.

Discussions and decisions regarding the project funding and delivery method would need to occur during the preliminary engineering phase, at which point one of the delivery options described above will be chosen, along with the preferred project funding mechanism, which will include exploration of alternatives to defray project capital costs through grants and low-interest loans.

Biosolids Treatment and Disposal Evaluation – Phase II Data Review & Regulatory Conditions and Outlook

PREPARED FOR: City/Borough of Juneau (CBJ), Alaska PREPARED BY: CH2M HILL

DATE: July 8, 2014

1.1 Introduction

The purpose of this technical memorandum (TM) is two-fold:

- To summarize CH2M HILL's review of data and information provided by City/Borough of Juneau (CBJ) regarding production and characteristics of waste activated solids, hereinafter referred to as "solids," or "biosolids."
- 2. To summarize federal, state, and local regulations and to provide a regulatory outlook pertinent to CBJ's future biosolids use or disposal options.

This TM updates information provided in the prior Biosolids Management System Alternatives Study, dated April 1, 2013, which was conducted for CBJ and is referred to herein as the Phase 1 Biosolids Report. Information from the Phase 1 Biosolids Report will not be repeated in this TM unless it is necessary to provide context to the updated information. When necessary for the project record, some information from the Phase 1 Biosolids Report and updated in this TM.

2.1 Summary of Information Received to Date

Table 1 lists relevant documents and information that CBJ has provided to CH2M HILL since the project began through the date of this TM.

Brief Description of Data or Document	Data or Document Source, Date, and Comments
Biosolids Management System Alternatives Study	By Tetra Tech, dated April 2013
2010 Biosolids Metals Analyses	Received, but not in useable format. Requested additional analyses.
Drawings by Carson Dorn for JDWWTP Incinerator Improvements	Received in PDF format, dated 2010. Some cost estimates also provided by email
Memo from Lammergeier CleanTech to CBJ about supercritical water oxidation (SWO) system	Received via email, dated May 2012
MWWTP Power Bill for Sept. 2013	Received as PDF attachment to email
CBJ Request for Bids – Biosolids Disposal Services	NovDec. 2013; project was cancelled
TM on Fats, Oils & Grease (FOGs) by Tetra Tech	Dated May 2013, received from CBJ via email
Email from Robert Deering of April 1, 2014 to CBJ about Genifuel technology	Received via email from CBJ
Dec. 2013 Letter from Ecological Engineering Group to CBJ proposing anaerobic co-digestion	Received via email from CBJ
Email from Robert Deering of April 1, 2014 to CBJ about gasification project in Covington, TN by PHG Energy	Received via email from CBJ
TM on Incorporating Aerobic Digestion with Membrane Thickening into Other Treatment and Disposal Options	By Tetra Tech dated, 11/29/13
TM on Pretreatment for Aerobic Digestion/Membrane Thickening Process at MWWTP	By Tetra Tech dated, 12/2/13
Descriptive List of Biosolids Treatment Alternatives for CBJ, including Incineration, ATAD, Composting, and Drying	By Tetra Tech, dated 9/19/13
Same List of Alternatives noted above, except in Matrix Format	By Tetra Tech, dated 9/23/13
Monthly Operating Reports for MWWTP and JDWWTP	Provided by CBJ
NPDES Permits for ABWWTP, JDWWTP, and MWWTP	From CBJ website
CBJ 2008 Comprehensive Plan and 2014 & 2015 Capital Improvement Plans	From CBJ website
Aerial Photos and Site Plans of JDWWTP and MWWTP	Provided by CBJ
Air Emissions Permit and Correspondence for JDWWTP Incinerator	Provided by CBJ
Information on Supply and Price of Wood Pellets as Heating Fuel	Emailed by CBJ, June 2-3, 2014

TABLE 1

Summary of Documents and Historical Data provided by CBJ to CH2M HILL related to Biosolids Study

3.1 Review of Solids Production Data

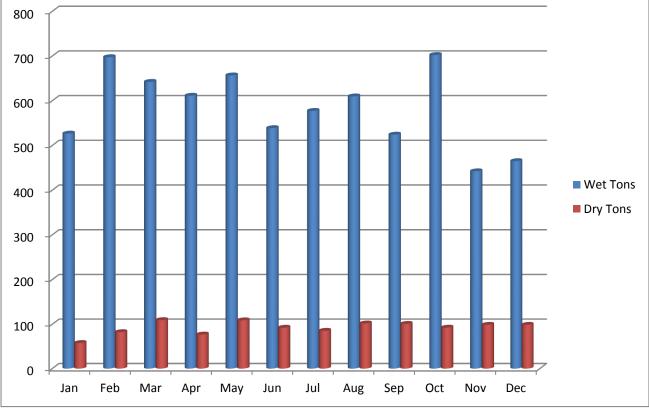
The CBJ owns and operates the following three wastewater treatment plants (WWTPs):

- 1. Auke Bay WWTP (ABWWTP), a facility where waste activated solids are stored aerobically and trucked to the MWWTP (see below). The ABWWTP has a permitted treatment capacity of 0.16 million gallons per day (MGD), expressed as a maximum daily limit.
- 2. Mendenhall WWTP (MWWTP), located north of downtown Juneau near the mouth of the Mendenhall River. Waste activated solids from MWWTP are not digested. Solids from ABWWTP are combined with MWWTP solids at the MWWTP and dewatered by belt filter press to approximately 15% total solids (TS). The MWWTP has a permitted treatment capacity of 4.9 million gallons per day (MGD), expressed as a maximum daily flow. No monthly average flow capacity is specified.
- 3. Juneau-Douglas WWTP (JDWWTP), located south of downtown Juneau near the Rock Dump Industrial Area and barge lines terminal. Waste activated solids from JDWWTP are aerobically digested and dewatered by belt filter press to approximately 15% TS. The JDWWTP has a permitted capacity of 2.76 MGD expressed as a maximum-month daily average, and 6.0 MGD expressed as a maximum daily flow.

As noted above, solids are generated only from the MWWTP and the JDWWTP. In order to update the information on solids production that was provided in the Phase 1 Biosolids Report, CH2M HILL examined monthly operating reports from MDWWTP and JDWWTP for calendar year 2013. Table 2 shows the solids production rates from the MWWTP, JDWWTP, and combined solids production, for the calendar year 2013.

Solids Source:	MWW	/ТР	JDM/	NTP	Combined Solids	
Month	Wet Tons	Dry Tons	Wet Tons	Dry Tons	Wet Tons	Dry Tons
Jan	526	58	0	0	526	58
Feb	518	56	180	27	697	82
Mar	425	83	217	27	642	109
Apr	485	59	126	17	611	77
May	457	76	199	33	657	109
Jun	386	66	152	26	539	92
Jul	425	58	152	27	577	85
Aug	455	75	155	27	610	102
Sep	377	75	147	26	524	101
Oct	536	68	166	25	702	92
Nov	356	86	86	13	442	99
Dec	371	82	94	16	465	99
Annual Totals:	5318	840	1675	264	6993	1105
Annual Average Day Rate (tons/day)	14.6	2.3	4.6	0.72	19.2	3.0
Maximum Month Average Day Rate (tons/day)	17.2	2.9	7.0	1.1	22.6	3.5
Maximum Month/ Average Day Peaking Factor	1.2	1.3	1.5	1.4	1.2	1.2
Annual Average %TS	15.8%		15.8%		15.8%	

TABLE 2 2013 Solids Production from CBJ's MWWTP and JDWWTP, plus Combined Totals


The capabilities of the belt filter presses used for solids dewatering are similar at the MWWTP and JDWWTP, and each facility produced solids averaging 15.8% TS in 2013. Closer review of operating records shows dewatering performance at both WWTPs ranging from 14% to 17% TS on a daily basis.

The peaking factors of maximum month to average daily solids production are higher at the JDWWTP than at the MWWTP, but that is largely because no solids dewatering was performed at the JDWTTP in January and early February 2013, resulting in a backlog of solids that had to be dewatered in late February and March at the JDWWTP.

Solids production from both WWTPs combined shows more consistency and lower peaks than solids produced from each WWTP individually. Conversations with CBJ staff indicated that is partially due to the transport of solids from one WWTP to another on occasions of equipment outages and other operational issues.

The average daily biosolids production rates for 2013 are in line with average daily rates for 2012 as shown in the Phase 1 Biosolids Report. A combined daily average of 18.5 wet tons per day (WT/day) and 2.8 dry tons per day (DT/day) were reported for 2012, as compared with a combined daily average of 19.2 WT/day and 3.0 DT/day for 2013 as shown above.

Figure 1 depicts combined solids production from CBJ's JDWWTP and MWWTP in 2013, shown in bar chart format as wet tons and dry tons for each month of the year.

FIGURE 1

Total Monthly Solids Production from CBJ's MWWWTP and JDWWTP in 2013

Figure 1 shows that monthly solids production (similar to monthly wastewater flows) did not vary considerably over the course of the year in 2013. Based on review of the 2013 biosolids data and the Phase 1 report, it is concluded for planning purposes that a traditional peaking factor of 1.35 can be applied to the annual average to derive the maximum monthly loadings.

Altogether, 2013 was a typical year in terms of solids production rates and trends, as compared with prior data from the Phase 1 Biosolids Report and confirmed by CBJ staff, thereby establishing a baseline for solids projections.

3.2 Review of Solids Characteristics and Analytical Results

Review of the Phase 1 Biosolids Report indicates that historical laboratory analyses of biosolids were not analyzed or reported in terms useful for comparison with the EPA Part 503 Rule that governs biosolids use and disposal. Therefore, new analyses were ordered as part of the current study. The first set of results were from samples taken at the JDWWTP and MWWTP on May 14, 2014, with results reported on May 29, 2014. The results are summarized and compared with EPA Part 503 pollutant ceiling limits in Table 3.

The results shown in Table 3 indicate that the regulated pollutants in dewatered biosolids from JDWWTP and MWWTP are all safely below the limits stipulated in the EPA Part 503 Rule, typically by an order of magnitude. While these grab samples are not necessarily representative of biosolids quality throughout the year, the low levels of regulated pollutants indicate that there should not be any issues with beneficial use or disposal of CBJ's biosolids with respect to presence of these regulated constituents.

TABLE 3

Comparison of EPA Part 503 Pollutant Ceiling Limits and "Exceptional Quality" Pollutant Concentration Limits with Results of Recent Solids Analyses from JDWWTP and MWWTP

Pollutant	EPA Part 503 Subpart B Pollutant Ceiling Concentrations (mg/kg) ¹	EPA Part 503 Subpart B Pollutant Concentrations for Exceptional Quality Biosolids (mg/kg) ^{1,2}	JDWWTP Sample Results ³	MWWTP Sample Results ³
Arsenic	75	41	6.9	4.5
Cadmium	85	39	1.7	< 1.0
Chromium	NA	NA	14	6.3
Copper	4,300	1,500	520	280
Lead	840	300	20	7.6
Mercury	57	17	1.1	<1.0
Molybdenum	75	TBD	6.6	2.2
Nickel	420	420	11	3.7
Selenium	100	36	4.9	2.9
Zinc	7,500	2,800	580	390

¹Source: Subpart B, Part 503 Regulation. All values are on a dry weight basis. Applies to all biosolids to be land-applied.

² Applies to biosolids sold or given away in bag or other container for land application, also representing the exceptional quality or "clean sludge" limits.

³ Dewatered biosolids cake sampled on May 14, 2014, and analyses reported on May 29, 2014.

mg/kg = milligrams per kilogram; NA = not applicable (prior standards were legally challenged)

The dewatered biosolids samples that were taken from the MWWTP and JDWWTP on May 14, 2014, were analyzed for a number of other constituents in addition to the regulated pollutants shown in Table 3. Additional results related to constituents of interest for beneficial use and disposal options are shown in Table 4 with brief remarks regarding the importance of each constituent shown.

TABLE 4			
Results of Other C	onstituents o	of Interest fro	om Recent Solids Analyses from JDWWTP and MWWTP

Constituent	JDWWTP Sample Results ¹	MWWTP Sample Results ¹	Remarks
Total Solids (TS)	14%	16%	Expressed as % of total mass, the remainder being water; shows better dewatering at MWWTP than at JDWWTP
Volatile Solids (Organic Matter)	82.4%	90.0%	Expressed as % of total solids above, volatile solids are a sign of fuel value and relative biological stability. Both samples show relatively high fuel value; MWWTP solids are not digested and so have higher fuel value and lower stability
Ash Content	17.6%	10.0%	Ash is the remaining dry matter that is not volatile and consists primarily of nutrients, silica, and metals
Total Nitrogen	7.8%	8.1%	Expressed as % of total dry mass, nitrogen levels are relatively high, showing good fertilizer value
Ammonia Nitrogen, mg/kg	980	3900	Higher ammonia in cake from MWWTP indicates lower stability and that biosolids were not digested
Nitrate, mg/kg	9.0	< 1.0	Higher nitrate in cake from JDWWTP indicates that solids were aerobically digested prior to dewatering
Phosphorus (as Phosphate)	4.3%	3.6%	Relatively high in phosphorus emphasizing good fertilizer value
pH units	6.56	5.94	Both pH results are within expected ranges but slightly acidic. MWWTP is more acidic showing fermentation of the undigested solids

¹ Dewatered biosolids cake sampled on May 14, 2014, and analyses reported on May 29, 2014.

As noted in Table 4, results from these two samples show characteristics reflective of national trends for biosolids that are (1) aerobically digested, in the case of JDWWTP and (2) undigested, in the case of MWWTP. The total solids (TS) concentration was noticeably higher in the MWWTP sample (16% TS) compared with the JDWWTP sample (14% TS). This may be because undigested solids are usually easier to dewater than digested solids; however, total dry solids for 2013 averaged 15.8% at both JDWWTP and MWWTP, so the differences in dewatering characteristics between solids from the two WWTPs may be inconsequential. Volatile solids (organic matter) were higher in the undigested sample from MWWTP at 90%, but also relatively high from JDWWTP at 82.4%. High volatile solids are an indicator of higher combustibility, and the laboratory results of ultimate and proximate analysis from Hazen Labs have confirmed the higher fuel value of MWWTP solids (received later and summarized in TM2). The difference in volatile solids content of biosolids from the JDWWTP and MWWTP are also reflected in the ash contents of the two WWTP solids, where the JDWWTP solids have a higher ash content than MWWTP solids because JDWWTP solids have been partially digested.

Finally, values of the primary nutrients, nitrogen and phosphorus, were relatively high in both samples, so heat-dried solids from these two WWTPs would be expected to have good fertilizer potential. In summary, both samples reflect typical values for waste-activated solids from municipal WWTPs. The differences between CBJ's two WWTPs shown in Table 4 are mostly attributable to the partially digested nature of JDWWTP solids, compared with the undigested nature of MWWTP solids.

4.1 Review of Pertinent Federal Regulations

When biosolids are prepared to be applied to the land, placed in a surface disposal site, or incinerated, the person who performs such preparation must meet the applicable requirements specified in pertinent EPA regulations, most of which are codified under 40 CFR Part 503 (Part 503 Rule). This preparer could be the

individual who generates biosolids during the treatment of domestic wastewater or the individual who derives a material from biosolids. The latter would include, for example, the individual who blends biosolids with some other material or a private contractor who receives biosolids from a treatment works and then blends the biosolids with some other material (e.g., a bulking agent).

The record keeping and reporting requirements of the Part 503 Rule specify who must develop and retain information, what information must be developed and the length of time such information must be kept. Section 405(f) of the Clean Water Act (CWA) provides that permits issued to a publicly owned treatment works (POTW) or any treatment works treating domestic sewage shall include conditions to implement the Part 503 Regulation unless such are included in permits issued under other federal or approved state programs.

However, it should be noted that the requirements in the Part 503 Rule must be met even in the **absence** of a permit, i.e., the Part 503 Rule is self-implementing. Thus, a responsible person must become aware of the Part 503 standards, comply with them, perform appropriate monitoring and record keeping and, if applicable, report information to the permitting authority even when a permit is not issued. These standards are also directly enforceable against any individual who uses or disposes of biosolids through any of the practices addressed in the final regulations. An enforcement action can be taken against an individual who does not meet those requirements, even in the absence of a permit.

4.1.1 40 CFR Part 503 Subpart B: Land Application

The land application category includes agricultural land application, forest application, land reclamation, rangeland application, and distribution and marketing of any biosolids product that will eventually be applied to land.

The land application requirements specify maximum concentrations and annual and cumulative loadings for metals; the applicability of each is dependent on the biosolids quality and use. Land application management practices are identified. Operational standards for pathogen reduction and vector attraction reduction are also required and are discussed in detail in Section 4.1.3 of this TM.

Pollutant limits in Subpart B that apply to CBJ biosolids that may be land applied or marketed as soil amendment are shown in Table 3 of this TM. As noted previously, CBJ's biosolids fall safely under the federal pollutant ceiling concentrations, based on MWWTP and JDWWTP biosolids samples analyzed in May 2014.

The Part 503 Rule precludes land application in the following circumstances:

- Where it is likely to adversely affect a threatened or endangered species or habitat
- To land that is flooded, frozen, or snow-covered so that biosolids enter a wetland or other waters of the U.S.
- Within 10 meters of waters of the U.S.
- At a biosolids application rate greater than the agronomic rate (nitrogen based, determined by crop need) of the site, unless otherwise specified by the permitting agency for a reclamation site

4.1.1.1 Pathogen and Vector Attraction Reduction for Land Application

Biosolids that meet the Class A pathogen requirements and meet the EQ pollutant limits are referred to as "Exceptional Quality." As such, these biosolids have minimal regulatory requirements. Biosolids that are Class B with respect to pathogen requirements are restricted to bulk application to agricultural land, forest, or reclamation sites. Additional site restrictions, such as food crop, grazing, and public access restrictions, are specific to Class B biosolids. For Class B biosolids, one of the first 10 criteria specified under Subpart D (described in Section 4.1.3) for vector attraction reduction must be met in order to land-apply biosolids.

4.1.1.2 Potential Impacts to CBJ for Land Application of Biosolids

Based on analysis of recent samples, CBJ's biosolids are able to meet the specified Part 503 Regulation numerical limits for land application (Subpart B Tables 1-4). The critical limiting criteria will most likely be the pathogen and vector attraction reduction requirements, depending on the end-use of the biosolids. Major issues for every applier of biosolids are individual state and local requirements. State of Alaska requirements are discussed in Section 5.1.

4.1.2 40 CFR Part 503 Subpart C: Surface Disposal

Generally, surface disposal refers to sludge-only landfills (monofills) and dedicated land disposal practices. Subpart C of the Part 503 Rule applies to any person who prepares biosolids that are placed on a surface disposal site, to the owner/operator of the site, and to the surface disposal site itself. This subpart does not apply to biosolids stored on an area of land or to the land on which the material is stored. Storage, by regulatory definition, is for biosolids that remain on-site for less than 2 years. If biosolids are in the same location for more than two years, it is considered surface disposal whether or not ultimate disposal is the intent. Should the CBJ desire to site and permit a sludge-only landfill, or monofill, the Part 503 Regulation would apply, in addition to State of Alaska siting, permitting, and monitoring requirements.

The Part 503 Rule does not apply to the co-disposal of biosolids with other municipal solid waste in municipal solid waste landfills. Co-disposal or use of biosolids at municipal solid waste landfills is regulated under 40 CFR Part 258. Biosolids disposed in a municipal solid waste landfill must be non-hazardous and pass the Paint Filter Test. Other site-specific requirements may apply depending on the landfill accepting the material.

4.1.2.1 Pollutant Limits for Surface Disposal

Pollutant limits are specified for surface disposal sites without a liner and leachate collection system for three metals: arsenic, 73 mg/kg; chromium, 600 mg/kg; and nickel, 420 mg/kg. The CBJ's biosolids are safely under these metal limits based on the data reviewed. If the pollutant concentrations exceed the specified limits, and the site does not have a liner or leachate collection system, site-specific pollutants may be requested at the time of permit application. The permitting authority must determine if site-specific pollutant limits are appropriate.

4.1.2.2 Management Practices for Surface Disposal

The following requirements apply to surface disposal of biosolids:

- A surface disposal site must not adversely affect a threatened or endangered species or its habitat, and it must not restrict the flow of a base flood.
- A surface disposal site must be designed to withstand certain seismic zone conditions.
- Runoff and leachate (for systems with a leachate collection system) must be collected and disposed of in accordance with the site permit.
- Methane gas must be controlled and monitored if the unit is covered.
- Food, feed, and fiber crops must not be grown and animals must not graze on active sites unless it is demonstrated that public health and the environment are protected. Public access to site must be restricted until 3 years after closure.
- A groundwater-monitoring program must be developed to demonstrate that biosolids do not contaminate any aquifer.
- Nitrogen in the groundwater must be monitored.

4.1.2.3 Pathogen and Vector Attraction Reduction for Surface Disposal

Class A or Class B pathogen reduction requirements must be met for biosolids disposed in a surface disposal unit unless a daily soil cover is placed. If daily cover is not used, the biosolids must be Class A or Class B, and must meet one of the alternative vector attraction reduction criteria specified in Subpart D of the Part 503 Rule.

4.1.2.4 Potential Impacts to CBJ for Surface Disposal

Biosolids generators who plan to use surface disposal sites must ensure that the biosolids meet the pollutant concentration limits imposed for that site. Some monofills receive raw solids that will not meet the Class A or B requirements. If a daily cover is placed, pathogen requirements do not have to be satisfied. The CBJ's biosolids meet the specified pollutant limits, but do not meet all pathogen and vector reduction criteria. Therefore, daily cover for the surface disposal site would be recommended for any surface disposal site, to minimize any pathogen and vector attraction concerns.

4.1.3 40 CFR Part 503 Subpart D: Pathogen and Vector Attraction Reduction

The Part 503 Rule states separate requirements for pathogen and vector attraction reduction. Pathogen requirements have two classifications: Class A and Class B, with Class A being the more stringent. Current processes to further reduce pathogens (PFRP) and processes to significantly reduce pathogens (PSRP) technologies are recognized, but pathogen density criteria must be met in addition to the use of a specific process.

Biosolids that meet the Class A pathogen requirements, one of the vector attraction reduction requirements (criteria 1 through 8 in Subpart D), and the numerical criteria (pollutant concentration limits) in Table 3, are referred to as "Exceptional Quality." As such, these biosolids have minimal regulatory requirements.

Prior to the promulgation of the Part 503 Rule, the EPA used a technology-based approach to pathogen and vector attraction reduction by requiring that biosolids undergo either PSRP or PFRP prior to being land-applied. Although these processes are still recognized as acceptable, additional requirements are specified to ensure process reliability.

As specified in Subpart D of the Part 503 Rule, either Class A or Class B pathogen reduction requirements must be met when biosolids are applied to the land or placed on a surface disposal site. In addition, the regulations require reduction of vector attraction, that is, control of those characteristics of biosolids that attract disease-spreading agents (e.g., flies or rats) when applied to the land or placed on a surface disposal site. There are no pathogen or vector attraction reduction requirements for biosolids fired in an incinerator. Subpart B of the regulations prescribes operational standards that designate the level of pathogen reduction for certain management methods, as shown in Table 5.

Pathogen Reduction Requirements from 40 CFR Part 505 Rule						
Management Method	Requirement					
Land Application (any)	Class A or B					
Surface Disposal	Class A or B					
Lawn or Home Garden	Class A					
Sold or Given Away in a Bag or Other Container	Class A					

TABLE 5

Pathogen Reduction Requirements from 40 CFR Part 503 Rule

4.1.3.1 Class A Pathogen Reduction Options

All options require pathogen reduction to show that the biosolids have met either a fecal coliform or *Salmonella* bacteria requirement and one of six alternatives:

- Demonstrate <1000 most probable number (MPN) fecal coliforms per gram total solids, or <3 MPN Salmonella per 4 grams of total solids
- Apply one of six alternatives:
 - Alternative 1 Time and Temperature
 - Alternative 2 Raise pH
 - Alternative 3 Reduce enteric viruses and helminth ova (low pathogen biosolids)
 - Alternative 4 Reduce enteric viruses and helminth ova (normal biosolids)
 - Alternative 5 PFRP treatment
 - Alternative 6 PFRP equivalent treatment

4.1.3.2 Class B Pathogen Reduction Options

The three options for Class B pathogen reduction are:

- 1. Demonstrate 2 million MPN or coliform forming units (CFUs) fecal coliforms per gram total solids
- 2. Apply PSRP treatment
- 3. Apply PSRP equivalent treatment

In addition, there are a number of site restrictions for land application for Class B biosolids.

4.1.3.3 Vector Attraction Reduction

Twelve criteria are specified in the Part 503 Rule for vector attraction reduction. The application of vector attraction reduction criteria depends on the type of biosolids and how they are to be used. For example, for biosolids that are to be land-applied, biosolids must meet at least one of Criteria 1 through 10. For surface disposal, any one of Criteria 1 through 11 may be used. Criterion 12 applies only to septage.

- Criterion 1. Volatile solids must be reduced by a minimum of 38 percent.
- **Criterion 2.** For anaerobically digested biosolids that cannot meet Criterion 1, bench-scale testing for 40 additional days at 30 to 37°C with 17 percent volatile solids reduction can be used.
- **Criterion 3.** Similar to Criterion 2 except that digestion takes place over 30 days at 20°C to show a 15 percent reduction.
- **Criterion 4.** The specific oxygen uptake rate (SOUR) for biosolids treated in an aerobic process shall be equal to or less than 1.5 mg O_2 per hour per gram of total dry solids.
- **Criterion 5.** For aerobic processes (e.g., composting), a minimum retention time of 14 days at 40°C must be provided. An average temperature of 45°C must be maintained.
- **Criterion 6**. Sufficient alkali must be added to raise the pH to 12 or higher for a period of 2 hours, with the biosolids remaining at a pH of 11.5 for an additional 22 hours without the use of additional alkali.
- **Criterion 7.** The total solids concentration of the portion of biosolids that does not contain unstabilized primary solids should be a minimum of 75 percent prior to blending with other materials.
- **Criterion 8**. The total solids concentration of the portion of biosolids that does contain unstabilized primary solids should be a minimum of 90 percent prior to blending with other materials.
- **Criterion 9.** Biosolids that are subsurface-injected must have no significant amount of biosolids on the surface within 1 hour after injection.
- **Criterion 10.** Surface-applied biosolids must be incorporated within 6 hours after application.

- **Criterion 11.** Biosolids placed on an active surface disposal site must be covered each operating day with soil or other material.
- **Criterion 12.** The pH of domestic septage must be raised to pH 12 by sufficient alkali addition for at least 30 minutes.

4.1.3.4 Potential Impacts to CBJ related to Pathogen and Vector Attraction Reduction

When evaluating future biosolids management options, the CBJ should consider the following pros and cons associated with producing Class A versus Class B material:

- More alternatives are available for beneficial uses of Class A products.
- Regulatory monitoring and record keeping requirements are less stringent for Class A products than for Class B materials.
- Typically, Class A stabilization requires higher O&M costs and more operator attention, which typically increases overall processing costs.
- Producing Class A products may alleviate growing public perceptions and concerns about health effects associated with pathogens.
- Consider the benefits from sale of Class A products such as heat-dried solids or compost.

4.1.4 40 CFR Part 503 Subpart E: Incineration

Subpart E of the Part 503 Regulation covers incineration. In particular, the following are specified: pollutant limits; operational standards; and frequency of monitoring, record keeping, and reporting.

Incineration is an acceptable biosolids management alternative in areas of the country where the regulatory and political climates are favorable, and few, if any, other biosolids management alternatives exist.

The construction of a new Sewage Sludge Incineration Unit (SSI) will require a Title V air permit under the Clean Air Act. The facility must apply for a Title V operating permit within 12 months of starting the sewage sludge incinerator. Title V requires a public hearing process. If it can pass the public hearing process and other application requirements, an incinerator could be built at either JDWWTP or MWWTP. The operating permit can be limited to the incinerator and the requirements in the permit should be the same as the requirements in the minor source operating permit, should a minor source operating permit be required. If no minor source operating permit is required, then the requirements of the Title V will be limited to the emission limits for the sewage sludge incinerator and general requirements for reporting, record keeping and annual fees based on the emissions from the incinerator. The Title V permit is not intended to add new requirements for the facility, but to summarize requirements all in one place. The Title V permit and minor source permit (if required) will be issued by the ADEC. State requirements are discussed in section 5.1 of this TM.

4.2 Predicted Changes to Federal Part 503 Regulation and their Potential Impacts

In the last few years, public concerns have arisen regarding beneficial uses of biosolids mostly related to Class B land application. These concerns have primarily centered on odors, aerosols, pathogens, and perceived human-health impacts. In response to these concerns, the National Research Council (NRC) of the National Academy of Sciences completed a study on the practice of biosolids land application and published a report in a report entitled *Biosolids Applied to Land: Advancing Standards and Practices (2003)*. The EPA summarized its review of the NRC report and resulting summit session in a Federal Register notice including the following summary highlights:

- EPA will continue its biennial review of the biosolids standards and regulations as required by the Clean Water Act. This means that information from biosolids research will be collected and analyzed every two years to assess the need for regulation based on new research findings.
- EPA will continue to provide compliance assistance to the states and take enforcement actions as appropriate.
- EPA will seek improved analytical methods for identifying and measuring pathogen levels in Class A and Class B biosolids.
- EPA will conduct field studies and chemical pollutant surveys in efforts to assess the ecological and human health impacts of biosolids land application.
- EPA will be involved in microbial risk assessment, exposure measurements, and stakeholder communications in efforts to respond to public concerns with accurate scientific information.
- EPA will continue to assess the potential risks and impacts of additional contaminants as required by the Clean Water Act. Pollutants that have recently been screened for risk assessment and potential regulatory action include acetone, barium, beryllium, carbon disulfide, diazinon, manganese, butanone, nitrate, nitrite, phenol, pyrene, and silver.

It is likely that some additional regulations will be imposed on biosolids quality and monitoring requirements in the future. It is advisable for the CBJ to track these regulatory impacts and summarize them periodically.

5.1 Review of Pertinent State and Local Regulations

5.1.1 State Disposal Regulations

The ADEC is responsible for monitoring and enforcing compliance with the federal biosolids disposal standards and the state solid waste regulations, found in the Alaska Administrative Code (AAC), title 18, Chapter 60. The ADEC will review disposal systems and landfills and monofills to look for potential compliance issues with both existing and proposed rules and standards. Changes and amendments are made to these solid waste regulations from time to time and the City should make sure it is always working from the most recent set of regulations.

18 AAC 60, as amended April 12, 2013, has the following articles, which affect the final disposal or reuse of biosolids:

Article 3. Municipal Solid Waste Landfills

OR

Article 4. Monofills

Article 5. Land Application of Biosolids

5.1.1.1 Untreated Sewage Solids

Disposal of untreated sewage solids may be disposed of in a monofill and would be regulated under 18 AAC 60.470, Monofills - Sewage Solids. If the monofill is located within the boundaries of an existing municipal landfill, it is considered co-disposal of sewage solids with municipal solid waste and would be regulated under 18 AAC 60.365, Co-disposal of Sewage Solids. Any other regulations pertaining to landfill disposal practices, design standards, water quality monitoring, and liquids restrictions would apply, as discussed in Section 4.1.2.

5.1.1.2 Monofills

By definition in 18 AAC 60, a monofill is a landfill or drilling waste disposal facility that receives primarily one type of solid waste and that is not an inactive reserve pit. Monofill disposal of Class A biosolids would likely still be considered sewage solids to ADEC. Achieving Class A or Class B status would satisfy the vector reduction requirements of the regulation. Monofills may be lined or unlined, provided that they contain less than certain levels of metal contaminant concentrations and that they are not placed near a fault, in an unstable area, or in a wetland. Ongoing groundwater monitoring and post-closure care of the monofill will likely be required. Regulations require a letter from the U.S. Fish and Wildlife Service stating that the monofill is not likely to adversely affect a threatened or endangered species listed under 16 U.S.C. 1533 (Endangered Species Act,

Section 4) or its designated critical habitat.

5.1.1.3 Land Application of Biosolids

The federal regulations governing land application of solids established in 40 CFR 503 and discussed in section 4.1.1 are adopted by reference by ADEC. Note that disposal of biosolids in a permitted monofill would preclude their disposal under the category of land application. An ADEC approved permit is required for any land application of treated biosolids that are not Class A. The monitoring constituents or parameters will then be selected on a site-specific basis. The requirements of 18 AAC 60.500 - 18 AAC 60.510 do not apply to the process used to treat domestic sewage or biosolids *before* their final use or disposal nor the ash generated during the firing of sewage solids.

5.1.2 End Uses

5.1.2.1 Landfill Cover

A Class I landfill such as the Juneau Capital Landfill must cover solid waste with six inches of earthen material at the end of each operating day. ADEC may approve an alternate cover material if the owner is able to demonstrate that it will control disease vectors, wildlife attraction, fire, odor, blowing litter, and scavenging, without posing a threat to public health or the environment. A Class A biosolids material by itself or blended with soil could satisfy this regulatory requirement. Workability of the biosolids material may be questionable for daily cover in high traffic areas. A Class A biosolids material may be more suited for final or interim landfill cover in low traffic areas.

5.1.2.2 Mine Reclamation and Forestry Land Application

Biosolids can and have been used nationally as a soil amendment for mine reclamation sites. The nutrient concentration of both the existing soil and the biosolids must be understood to produce a good mix for revegetation. While, the Alaska Department of Natural Resources (ADNR) and ADEC regulate mine reclamation and closure following under the State of Alaska Reclamation Act, there are no additional regulations that would preclude the use of biosolids as a soil amendment. Forestry land is likewise overseen by ADNR to monitor and ensure the integrity of the land.

Biosolids used as a soil amendment could be considered a resource for either mines or forest land. Land application in this manner would be subject to the same Solid Waste Management Regulations listed above: 18 AAC 60, Article 5, as well as 40 CFR 503, adopted by reference.

5.1.3 State Air Regulations

The state air regulations are contained in 18 AAC 50, Air Quality Control. Air regulations encompass overall ambient air quality and limit emissions from specific sources. When permitting a new source such as an incinerator, CBJ must include all air pollutant sources on the site, cumulatively. In addition to the Title V air permit required for any sludge incineration facility, state regulations may also require a construction permit. Both permits will likely apply the standard operating permit conditions of 18 AAC 50.346.

Incinerators are specifically regulated in 18 AAC 50.050 – Incinerator Emission Standards. Emissions are limited both by concentration and by weight per unit time. Incinerators have a particulate matter (PM) limit of 0.65 grams per kilogram of dry sludge input.

It is also possible that a Minor Permit may be required under 18 AAC 50.502. As a new source, the expected emissions should be checked against the limits listed in Table 6. If emissions are below these thresholds, no construction permit will be required.

Minor Air Permit Limits								
Pollutant	Limit	Unit						
PM-10	15	tons per year						
Nitrogen Oxides	40	tons per year						
Sulfur Dioxide	40	tons per year						
Lead	0.6	tons per year						
PM-2.5	10	tons per year						

TABLE 6 Minor Air Permit Limits

Source: 15 AAC 50.502 (c) (1)

Any emissions from a CBJ WWTP will be added cumulatively to an existing inventory of pollutant sources in the area. It is not expected that limits more rigorous than those listed in Table 6 or the EPA's health-based standard will be imposed upon individual sources. The ambient air quality standards must be met in all locations in the country at all times regardless of specific emissions in the area.

It may be noted that the Mendenhall Valley area of Juneau has been designated by the EPA as "nonattainment" for PM-10, meaning that the air quality does not meet the ambient standard for small particulate matter with a diameter of 10 micrometers or less. However, through the implementation of a wood smoke control program and paving of unpaved roads, the PM-10 levels measured in the Mendenhall Valley have been about a third of the 24-hour standard since the year 2000. The ADEC is currently in the process of downgrading Juneau's PM-10 status to maintenance. The PM-10 nonattainment issues are not a factor in the ability to obtain a Title V operating permit. At this point, it appears the emissions from the existing facility and the proposed biosolids alternatives would be low enough to meet the Table 6 limits.

5.1.4 Local Requirements:

The Municipal Code of the City and Borough of Juneau contains codified requirements which should be reviewed prior to design. Chapter 36.40 – Solid Fuel-Fired Burning Devices was adopted to address airborne pollutants in the area. In the Mendenhall Valley, an air emergency will be announced when air particulate levels reach unhealthy levels. During air emergencies, all woodstove burning is prohibited; pellet stoves are exempt from the wood stove regulations and can burn at any time. This section of the Municipal Code is also adopted by reference in 18 AAC 50.030 and is thus enforceable at the State level.

Performance standards applying to industrial activity are outlined in Chapter 50 – Commercial and Industrial Standards. The selected design shall not permit the emission of obnoxious odors or toxic or corrosive fumes or gases. Dust or vapor shall not be exhausted directly into the atmosphere.

6.1 Suggested Design Criteria for Biosolids Handling Facility

This subsection will briefly propose some general design criteria in terms of projected solids loadings and general characteristics, so that the alternatives analyses can proceed without delay. Some adjustments and refinements to these general design criteria may occur as the alternative analysis develops and we obtain more information.

6.1.1 Proposed Solids Projections

Our review of area population projections and comprehensive plans indicates that the population and economic activity of the CBJ service area will remain fairly stable for an indefinite period. In other words, no significant increases or decreases in population and economic activity are expected over the 20-year planning cycle of this study. Therefore, no significant changes in biosolids production rates from the MWWTP and JDWWTP are expected over the next 20 years.

In view of the uncertainties in making 20-year projections, CBJ staff suggested in our May 8-9 project workshop that it would be prudent to add a 10% contingency to current solids loadings for developing design-year projections. Table 7 shows the proposed, general design criteria that we will issue to equipment and system vendors during the upcoming, alternatives analysis phase of the project.

Design Criterion	JDWWTP Solids	MWWTP Solids	Combined Solids	Remarks
Average Annual Solids Loading	0.8 DT/day	2.6 DT/day	3.4 DT/day	Annual average loadings are used for estimating O&M costs
Average Annual Solids Concentration	15% TS	15% TS	15% TS	It is assumed that existing solids dewatering capability can be maintained, but not improved. Even though 15.8% TS was achieved in 2013, 15% TS is assumed for conservatism in design.
Average Annual Solids Loading, WT/day	5.3 WT/day	17.3 WT/day	22.6 WT/day	This is the mathematical result of dry solids loadings divided by %solids fraction.
Maximum Month/Average Day Peaking Factor	1.5	1.3	1.35	Slightly more conservative than existing peak factors.
Maximum Month Solids Loading, DT/day	1.2 DT/day	3.4 DT/day	4.6 DT/day	Monthly maximum daily values are assumed for design with sufficient liquid storage capacity to handle daily and weekly peak loadings.
Maximum Month Solids Loading, WT/day	8.0 WT/day	22.7 WT/day	30.7 WT/day	The maximum month, average daily biosolids production rates in WT/day govern sizing of drying and incineration equipment.

Proposed General I	Design Criteria for	Purpose of Devel	oping Solids Man	agement Alternatives
rioposca acherari		i aipose oi berei	oping condo man	Bennenie, arennarites

Other design criteria may be developed as the alternatives analysis proceeds.

TABLE 7

7.1 Summary and Conclusions

The present work by CH2M HILL is intended to build upon investigations already completed by CBJ and Tetra Tech, Inc. into possible disposal and treatment alternatives. This TM has summarized CH2M HILL's review of data and information provided by CBJ in order to provide sufficient background to begin the current project. This TM has also summarized the federal, state, and local regulations, providing a regulatory outlook for CBJ's future biosolids use or disposal options. The information received and data reviewed have been used to develop design criteria for the upcoming analysis of biosolids management alternatives for CBJ, the ultimate goal of which is a recommendation for a long-term biosolids management approach that is most appropriate and sustainable for Juneau.

At the first project workshop held on May 7-8, 2014, CBJ and CH2M HILL team members reviewed the history of the project and current issues and challenges that CBJ is facing. These include sludge constituents, sampling issues, odors, landfill acceptance, lack of available land for development, and possible lack of market for beneficial use of an end product. If CBJ sludge has a high metal content, objectionable odors, or high levels of pathogen indicators, it will affect treatment and disposal methods.

Biosolids samples taken during this study and summarized herein indicate that levels of metals are safe and well below EPA limits. Odors and pathogen levels can be reduced by appropriate treatment. While there are a number of technologies that can convert biosolids topsoil amendments or low-grade fertilizers, any investigation must include a determination of whether there would be sufficient market demand in Juneau to use these products locally.

At the first project workshop, CBJ and CH2M HILL team members also discussed allowable risk tolerance. The following US EPA definitions of emerging technologies for biosolids management were used:

- **Established** Technologies widely used (i.e. generally more than 10 facilities throughout the world) are considered well established.
- Innovative Technologies meeting one of the following qualifications: (1) have been tested at a fullscale demonstration site in this country; (2) have been available and implemented in the United States (U.S.) for less than 5 years; (3) have some degree of initial use (i.e. implemented in less than ten utilities in the U.S.;. and (4) are established technologies overseas with some degree of initial use in the U.S.
- **Embryonic** Technologies in the development stage and/or tested at laboratory or bench scale. New technologies that have reached the demonstration stage overseas, but cannot yet be considered to be established there, are also considered to be embryonic with respect to North American applications.

Subsequent to the May workshop, CBJ received information on Wright Tech Systems' Biodryer™ technology. The "biodryer" is an in vessel composting system. As a composting system, the "biodryer" requires adding a biomass, like woodchips, as a bulking agent. The technology was evaluated using the governing principals established in first workshop. The CBJ eliminated composting as an acceptable technology due to insufficient available land for a facility and the unknowns surrounding both the availability of wood chips for amendment a local market for a compost product. Additionally, the biodryer technology has limited experience with biosolids. Most of the applications have been small institutional installations using food wastes as the compostable material. Any biodryer installations using biosolids are small in comparison to Juneau's biosolids production.

The Juneau area also poses some unique geographical challenges that point toward a need for more established and reliable technologies. These challenges include a relatively remote location, limited transportation options that may result in delayed shipments for equipment, an unpredictable climate, and lack of specialized support services. Considering these factors, CBJ and CH2M HILL team members agreed that the responsible choice for CBJ is to settle on an established or innovative technology that can demonstrate a successful track record of operating facilities.

The following three governing principles for selecting a biosolids management alternative were decided upon at the first workshop:

- 1. Need Class A pathogen reduction to create an "exceptional quality" biosolids if desired
- 2. Need to have multiple options for end use to minimize risk of disposal
- 3. Need to maximize volume reduction to the extent possible.

Based on these governing principals, the following three alternatives were selected for more detailed analysis:

- 1. Thermal dryer with production of Class A biosolids
- 2. Dryer with energy-recovery furnace
- 3. Stand-alone incinerator (fluidized bed type)

Evaluation criteria for the alternatives analysis were also established and weighted during the first project workshop, as shown in Figure 2.

		Ease of Operation	Carbon Footprint	Timeline for implementation	Location of the technology	Logistics of transport	Public health & safety issues	Environmental & permitting issues	Risk	End product disposal method	Energy consumption & sourcing	Score	Weight
		Α	В	С	D	Е	F	G	н	I	J		
Ease of operation	Α	A	A	С	A	E	F	A	Н	I	A	5	0.09
Relative Carbon Footprint	В		В	С	В	E	F	G	Н	I	J	2	0.04
Timeline for implementation	С			С	С	С	F	С	Н	С	С	8	0.15
Location of the technology	D				D	E	F	G	Н	I	J	1	0.02
Logistics of transport	E					E	F	G	Н	I	J	4	0.07
Public health & safety issues	F						F	F	F	F	F	10	0.18
Environmental & permitting issues	G							G	Н	I	J	4	0.07
Risk	н								Н	Н	Н	9	0.16
End product disposal method	I									I	J	6	0.11
Energy consumption & sourcing	J										J	6	0.11
												Sum of Weights	1.00

FIGURE 2

Evaluation Criteria and Weightings to be Used in Biosolids Alternatives Analysis

7.2 Path Forward

The next task is to proceed with the alternatives analysis under the design and evaluation criteria established to date. The results of the alternative evaluation will be summarized in TM2, which will be delivered to CBJ in early July, prior to Project Workshop 2, which will be held in Juneau on July 8-9, 2014.

Biosolids Treatment and Disposal Evaluation–Phase II Alternatives Evaluation and Results

PREPARED FOR: City/Borough of Juneau (CBJ), Alaska

PREPARED BY: CH2M HILL

DATE: August 7, 2014

1.1 Introduction

Objectives of this Technical Memorandum 2 (TM2) are as follows:

- 1. To summarize solids projections, characteristics, and conditions that comprise the design criteria for long-term biosolids management options described herein
- 2. To present the results of the long-term solids management evaluation, including detailed descriptions of the alternatives, the methodology used to evaluate alternatives, and evaluation results
- 3. To recommend an alternative for implementation, based on the results of the alternative evaluation and discussion in Workshop 2.

This TM will also cover additional information obtained since Workshop 1 on biosolids characteristics and results of additional testing not received in time for TM1. It will summarize the methodology and results of the alternatives evaluation, and present additional issues to consider in selecting and implementing an alternative. Finally, a recommendation will be made for the selected alternative.

2.1 Solids Loading Projections, Characteristics, and Design Conditions

Based on a review of historical conditions and projections of future conditions for the CBJ, Table 1 presents design solids-loading criteria developed for biosolids management facilities at the Juneau-Douglas WWTP (JDWWTP), the Mendenhall WWTP (MWWTP, which includes the Auke Bay WWTP solids), and combined loadings from both facilities. The units describing biosolids quantity are in dry tons per day (DT/day) and wet tons per day (WT/day). The projected loadings are based on historical trends summarized in the Phase 1 report, supplemented by data from calendar year 2013, with the addition of 10% reserve capacity to account for the potential of increased industrial activity and population growth in the future.

Belt filter presses at both WWTPs produced an average of 15.8% solids in 2013, but WWTP production records show that dewatered cake solids range from 14% to 17% solids on a day-to-day basis. For sizing of future biosolids handling facilities, it is conservatively assumed that dewatering facilities at both WWTPs will produce 15% Total Solids (TS). If the dewatering operations can produce solids of higher TS content than 15% TS in the future, then the future biosolids handling facilities will have additional reserve capacity, which will provide for more redundancy and flexibility in operations.

	JDWWTP		Combined	agement Alternatives
Design Criterion	Solids	MWWTP Solids	Solids	Remarks
Average Annual Solids Loading	0.8 DT/day	2.6 DT/day	3.4 DT/day	Annual average loadings are used for estimating O&M costs
Average Annual Solids Concentration	15% TS	15% TS	15% TS	It is assumed that existing solids dewatering capability can be maintained, but not improved. Even though 15.8% TS was achieved in 2013, 15% TS is assumed for conservatism in design.
Average Annual Solids Loading, WT/day	5.3 WT/day	17.3 WT/day	22.6 WT/day	This is the mathematical result of dry solids loadings divided by %solids fraction.
Maximum Month/Average Day Peaking Factor	1.5	1.3	1.35	Slightly more conservative than existing peak factors.
Maximum Month Solids Loading, DT/day	1.2 DT/day	3.4 DT/day	4.6 DT/day	Monthly maximum daily values are assumed for design with sufficient liquid storage capacity to handle daily and weekly peak loadings.
Maximum Month Solids Loading, WT/day	8.0 WT/day	22.7 WT/day	30.7 WT/day	The maximum month, average daily biosolids production rates in WT/day govern sizing of drying and incineration equipment.

TABLE 1 Proposed General Design Criteria for Purpose of Developing Solids Management Alternatives

Biosolids characteristics were derived from dewatered cake samples taken in May 2014. The first set of sample results were presented in TM1. They indicate that CBJ's biosolids are typical of undigested waste activated solids (WAS) in the case of MWWTP, showing 90% volatile solids (VS) content. In the case of the Juneau-Douglas WWTP (JDWWTP), the lower VS content of 82% VS indicates that WAS from the JDWWTP is partially digested. Other aspects of biosolids from the two WWTPs are typical of biosolids from other WWTPs.

Additional analytical results were received on June 20, 2014, from Hazen Laboratories in Denver, CO, which summarize the potential fuel value of biosolids samples from MWWTP and JDWWTP based on ultimate and proximate analyses of biosolids combustibility and energy potential. Those analytical results are summarized in Table 2.

The sample results shown above are consistent with the laboratory results of other standard parameters reported in TM1. The results show that MWWTP solids have higher fuel value than JDWWTP solids, primarily because the MWWTP solids are not digested, while JDWWTP solids are partially digested. If a central facility is built for incinerating the solids from both WWTPs, it would not be necessary to continue aerobically digesting the JDWWTP solids. Not digesting the solids at JDWWTP could save energy, increase the dewatering potential of JDWWTP solids, and increase the fuel value of its waste solids. Not digesting the solids from JDWWTP slightly and may increase the odor potential of JDWWTP solids, however.

Overall, both JDWWTP and MWWTP solids have a relatively high fuel value if they are dried sufficiently to allow for combustion. The relatively low total solids content in the dewatered solids from these WWTPs (14.5% TS at the JDWWTP and 17.3% TS at the MWWTP from grab samples) requires the evaporation of

large amounts of water, with its attendant high energy costs, before the biosolids from these WWTPs can be combusted and the fuel value can be fully recovered.

Constituent	JDWWTP Sample Results ¹	MWWTP Sample Results ¹	Remarks
Percent Solids	14.5%	17.3%	Expressed as % of total mass, the remainder being water; shows better dewatering at MWWTP than at JDWWTP
Volatile Solids (Organic Matter)	73.1%	80.8%	Expressed as % of total solids above, volatile solids are a sign of fuel value and biological stability. MWWTP solids are not digested and have higher fuel value and lower stability than JDWWTP solids.
Ash Content	16.9%	10.2%	Ash is the remaining dry matter that is not volatile and consists primarily of nutrients, silica, and metals
Fixed Carbon	10.0%	9.0%	JDWWTP fixed carbon is slightly higher than MWWTP, reflecting that JDWWTP solids have been digested
Sulfur	1.0%	0.7%	Indicates higher level of sulfur in wastewater influent to JDWWTP, but sulfur is not high enough at either WWTP to pose a problem
Lower Heating Value (LHV), Btu/lb	7500	7855	Heating value of dried solids if no combustion heat is recovered
Higher Heating Value (HHV), Btu/Ib	8040	8455	Heating value of dried solids if all combustion heat is recovered
Mineral Matter Free (MMF) Heating Value, Btu/Ib	9506	9842	Represents total heating value of solids without interference by inert mineral matter

TABLE 2 Selected Results from Ultimate & Proximate Analysis of Solids from JDWWTP and MWWTP

¹ Dewatered biosolids cake sampled on May 14, 2014, and analyses reported on June 19, 2014.

3.1 Description of Alternatives

The alternatives for biosolids management by the CBJ are being evaluated in this TM:

- 1. Continuation of the current practice of shipping dewatered biosolids from the JDWWTP and the MWWTP by barge to Oregon for landfill disposal (also known as the "status quo" or "base case" alternative.
- 2. Thermal drying of biosolids at a central facility with local disposal or marketing of the dried, Class A biosolids product.
- 3. Thermal drying of biosolids followed by combustion (incineration) of the biosolids to recover heat that is then recirculated to the biosolids drying process, thus reducing the amount of purchased fuel.
- 4. Thermal combustion (incineration) of the biosolids in a new fluidized-bed incinerator that recovers heat from the combusted biosolids to aid in evaporation and reduce the amount of purchased fuel.

Each of the alternatives that require a new biosolids drying or incineration facility (Alternatives 2-4 above) have been evaluated based on locating new drying or incineration facility at one central location, either at the JDWWTP or the MWWTP.

The advantages and disadvantages of locating new facilities at the MWWTP or the JDWWTP are:

- 1. **MWWTP Location Advantage**: The MWWTP currently produces 79% of CBJ's biosolids, with most of the future growth in Juneau predicted to be in the MWWTP service area. Locating central biosolids processing facilities at the MWWTP would reduce the truck traffic and associated costs of cross-town hauling of dewatered biosolids, since only about 20% of CBJ's biosolids would have to be transported from the JDWWTP to the MWWTP.
- 2. **MWWTP Location Advantage:** The MWWTP is closer to the Capital Landfill than the JDWWTP, which is the primary disposal option for the dried biosolids or ash that would be produced by these alternatives, so there would be less vehicle mileage for hauling dried product or ash.
- 3. JDWWTP Location Advantage: The MWWTP is located in the Mendenhall Valley, which is currently a non-attainment area for particulate matter in air emissions. A biosolids dryer or combustion unit may need tighter air emissions controls and obtaining an air emissions permit may be more difficult at MWWTP than JDWWTP, especially since the JDWWTP previously had an air emissions permit for the fluidized-bed incinerator (FBI) that has been decommissioned.
- 4. **JDWWTP Location Advantage:** The JDWWTP has more space available onsite for locating a new biosolids facility than the MWWTP, which only has the location of an existing building (called the ABF Building) for siting new biosolids facilities. A new biosolids facility at the MWWTP would therefore require demolition of an existing structure, while a new biosolids facility could be built at the JDWWTP with minimal demolition.
- 5. JDWWTP Location Advantage: The JDWWTP does not have neighbors in close proximity like the MWWTP does. The MWWTP neighbors have periodically filed complaints related to odors from the MWWTP. It is believed that the JDWWTP would be less subject to odor and nuisance complaints than the MWWTP, due to its location in an industrial zone next to a shipping dock and more land available for a buffer zone.

Recognizing the possibility that a central biosolids facility may be located at the JDWWTP or the MWWTP, a Benefit/Cost analysis was developed for the two alternative locations, as described later in this TM.

The following subsections describe each of the technical alternatives in more detail. The first alternative assumes that CBJ will continue its current practice as described below. The other three alternatives assume that new facilities for handling biosolids will be built at either the MWWTP or the JDWWTP.

3.1.1 Alternative 1 - Continuing the Transport and Landfilling of Dewatered Biosolids

Since the fluidized-bed incinerator (FBI) at the JDWWTP was decommissioned in 2011, CBJ has been landfilling all of its dewatered biosolids. Some of the biosolids have been landfilled at the local Capital Landfill in Juneau, but most of the biosolids are shipped by barge, rail, and truck to the Columbia Ridge Landfill in Arlington, Oregon. A summary of biosolids production and disposal in Calendar Year (CY) 2013 is shown in Table 3.

Table 3 indicates that 6,992 WT of biosolids were produced at CBJ's two WWTPs, based on WWTP monthly operating reports, as shown in the 2nd column. Biosolids disposal records from WM are shown in the next two columns of Table 3. They indicate that as recently as July 2013, significant quantities of biosolids (430 WT) were disposed of locally at the Capital Landfill in Juneau. The average tipping fee for biosolids disposed of at the Capital Landfill was reported to be \$88 per WT. The average fee for biosolids transport by barge and rail and disposal at the Columbia Ridge Landfill in Oregon was reported to be \$140 per WT in 2013, but that fee was recently increased to \$215 per WT.

The reason given for rejection of biosolids by the Capital Landfill has been odors from the dewatered biosolids, which prompted complaints from Capital Landfill's neighboring commercial developments. It is not believed that odors from the biosolids can be mitigated unless a new process such as heat-drying or incineration is installed to further treat the dewatered biosolids.

Month in CY 2013	Biosolids Production, from WWTP Records, WT	Disposal at Capital Landfill in Juneau, WT	Disposal at Columbia Ridge Landfill in Oregon, WT	Total Biosolids Disposed, from WM Records, WT
January	526	35	212	247
February	697	0	372	372
March	642	0	602	602
April	611	191	431	622
Мау	657	128	821	949
June	539	0	558	558
July	577	430	274	704
August	610	0	491	491
September	524	0	368	368
October	702	0	810	810
November	442	0	637	637
December	465	0	458	458
Total WT Biosolids Recorded for CY 2013	6,992	784	6,033	6,817

TABLE 3 Summary of CBJ Biosolids Disposal Amounts in Wet Tons (WT) in Calendar Year (CY) 2013

As shown in Table 3, there are variances between the monthly totals of dewatered biosolids produced, as shown in WWTP records (2nd column) and the monthly totals of biosolids disposed, shown in WM records (last column). These variances can be attributed biosolids cake storage practices prior to transport and disposal. The difference between total biosolids produced and disposed of in CY 2013 is only 2%, which again can be attributed to the timing of biosolids storage and disposal.

The current costs for landfill disposal are estimated to be approximately \$1.5 million (M) in equipment costs, prior to markups, and approximately \$1.8 M annually in O&M costs before a 10% contingency is applied. After markups on equipment costs, the capital costs associated with Alternative 1 are \$3.2 M and annual O&M costs total \$2M.

3.1.2 Alternative 2 - Thermal Drying Technology

In the most general terms, thermal drying is the use of heat to evaporate water from wastewater residual solids. The drying system, in addition to the dryer itself, generally consists of materials handling and storage equipment, heat generation and transfer equipment, air movement and distribution equipment, emissions control equipment, and ancillary systems. Drying systems use different methods for heat transfer, including convection, conduction, and radiation heating. To some extent, multiple methods of heat transfer are used by individual systems, but they are generally categorized by their primary method of heat transfer.

Systems that primarily use convection for heat transfer are often referred to as "direct" dryers. In direct heat dryers, hot air/gas flows through a process vessel and comes into direct contact with particles of wet solids. The contact between the hot air and cold wet cake allows the transfer of thermal energy, which causes an increase in wet cake temperature and evaporation of water. The hot air/gas can be produced by almost any source of heat, but most often is produced by a gas or oil-fired furnace. Since natural gas is not available at CBJ's WWTPs, the drying systems proposed for Juneau are based on utilizing No. 2 heating oil for fuel.

Examples of direct drying equipment are rotary drum dryers and belt dryers. Belt dryers are most popular for smaller systems that would be typical of the size needed by CBJ, because they are more readily scaled down than the rotary drying systems typical of larger WWTPs. Belt dryers are also inherently safer and simpler to operate because they operate at lower temperatures of 300°F (150 °C) as opposed to rotary dryers, which operate at 800-900°F (425-480°C). Therefore, the belt drying system is recommended for consideration by CBJ.

Belt dryers use direct contact of circulating hot air with wet sludge. Sludge is pumped or otherwise distributed onto a slowly moving horizontal belt enclosed in a housing. The wet material moves through one or more drying chambers, where the moisture is released into the circulating air. After passing through the drying chambers, the dried cake falls off from the belt onto a hopper and is conveyed to a loading or storage facility. Each drying zone has its own circulating fans and air temperature control. Excess moisture is removed from the air stream in a saturator or vented directly to atmosphere. Heat for the air circulation loop in each zone is provided in a heat exchanger by indirect contact with steam, hot water, thermal oil, or hot air serving as the heat source. The drying temperatures are controlled at approximately 300°F (150 °C) at the belt discharge. The sludge is heated to approximately 170°F (75 °C). The lower drying temperature is claimed to produce a less odorous air stream.

The size and shape of the dried material produced depends on shape and size of the feed and can be composed of larger fragments, non-uniform in shape, with sizes between 1 and 10 mm. Vendors have developed several types of feed systems. The most common include using an extruder and knife to produce a spaghetti-shaped pellet and providing back-mixing and a screw feeder to shape and distribute the feed evenly across the belt. Utilizing recycled dried material has also been used to produce a uniformly sized pellet. A pelletizer may be added if smaller pellets of uniform size are desired. Since the sludge is not excessively moved in this system, dust formation is reduced.

A schematic diagram of a typical belt drying system is shown in Figure 1, and a photograph of the dried biosolids product typical to a belt drying system is shown in Figure 2.

The most common and prevalent belt-drying system worldwide is manufactured by Kruger, a division of Veolia Technologies. CH2M HILL worked with Kruger to provide a conceptual design and preliminary budget quote for this project, based on its BioCon Belt Drying system. Another advantage of the BioCon Belt Drying System is an energy recovery system (ERS) that Kruger developed to combust the dried biosolids and recycle the heat energy from combustion back to the dryer. The belt dryer with energy-recovery combustion furnace is described in the next subsection.

3.1.3 Alternative 3 - Thermal Drying followed by Incineration for Heat Recovery

The Kruger BioCon - Energy Recovery System (ERS) process utilizes drying to substantially decrease the water content of the sludge prior to incineration. Energy is recovered by using the dried biosolids as fuel for the furnace, which in turns heats the air that dries the biosolids. Wood pellets can also be used whenever there are not sufficient dried biosolids for a fuel source. Additional energy is recovered by a heat exchanger system which extracts heat from the water removed by drying. The final product of the furnace is an inert ash at > 98% solids content. Alternatively, the dryer can operate without the furnace and produce dried biosolids pellets at 90% solids as described above in Alternative 2, but in that case, No. 2 heating oil is the only fuel used for providing the heat to dry to the biosolids.

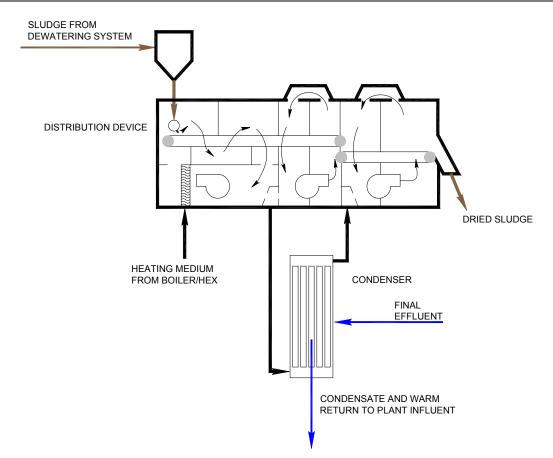


FIGURE 1 Belt Drying Process Schematic

FIGURE 2 Dried Biosolids Product from a Belt Dryer (courtesy of Kruger)

Supplemental fuel for the furnace is still needed for the BioCon-ERS dryer, because of the relatively high water content of biosolids produced by the belt filter presses at JDWWTP and MWWTP. Heat is recovered from the water in the dryer exhaust and used to preheat the biosolids going into the dryer, but the air from the furnace is the primary source of heat to the dryer. The dryer and furnace exhausts are scrubbed to remove any pollutants and discharged to the atmosphere. The resulting ash can be mixed with soil and placed in the landfill or used as a fly ash substitute in construction projects using concrete. If the dried pellets (Figure 2) are not incinerated, they may be used as fertilizer or soil amendment.

Figure 3 illustrates the Kruger BioCon-ERS process. Dewatered sludge is stored in the sludge silo until there is enough to conduct a dryer run. Solids are pumped into an extrusion device and distributed on the belt. They are dried with hot air from the furnace which combusts dried biosolids. A photo of the furnace from a Kruger BioCon-ERS unit installed in Buffalo, Minnesota, is shown in Figure 4.

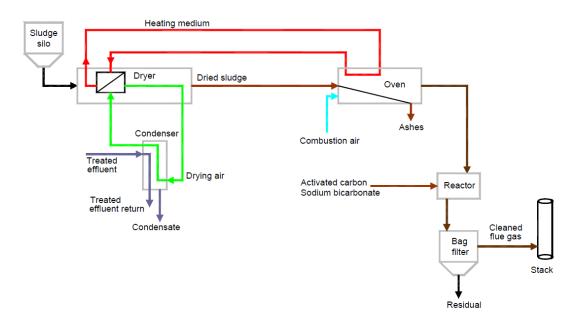


FIGURE 3 BioCon Dryer and Energy Recovery System (BioCon-ERS) Process

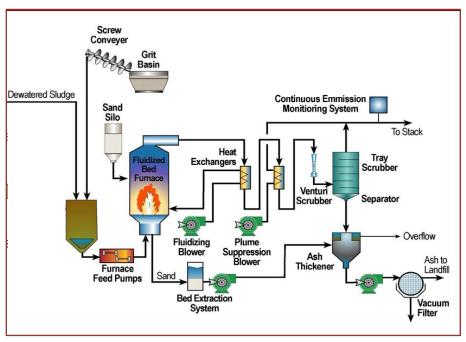


FIGURE 4 BioCon-ERS Incinerator Furnace

3.1.4 Alternative 4 – New Fluidized Bed Incinerator

CH2M HILL worked with Infilco-Degrement, Inc. (IDI) on recommendations for the incineration alternative. IDI manufactured and supplied the de-commissioned FBI unit at the JDWWTP, installed in the 1970's. After reviewing the reports and current status of CBJ's decommissioned and abandoned FBI unit at the JDWWTP, IDI's technical representatives concluded that the costs and risks of rebuilding the existing FBI unit to comply with present-day regulatory standards and technologies would be higher than the costs and risks of installing a completely new FBI unit that is designed to comply with all current standards. Therefore, IDI prepared a conceptual design and budget proposal to provide a new FBI unit, to be located at the MWWTP.

An FBI built to present-day EPA standards is a complex system with many components. A typical processflow schematic for an FBI unit is shown in Figure 5.

FIGURE 5

Typical Fluidized Bed Incinerator (FBI) and Accessories

The following subsections describe the alternative-evaluation methodology and results of the alternatives evaluation.

4.1 Alternatives Evaluation

The methodology used to evaluate the four alternatives described above is based on the multi-attribute utility analysis (MUA) concepts of decision science. In the MUA evaluation approach, non-monetary criteria and life-cycle cost estimates are combined to rank the alternatives according to the quantitative term of a Benefits/Cost (B/C) ratio. The evaluation methodology is described in this section.

4.1.1 Review of Evaluation Criteria, Weighting, and Ranking

In order to arrive at the B/C ranking of alternatives, the non-monetary criteria must first be developed, then weighted and ranked to arrive at quantitative rankings of each alternative according to each of the non-monetary criteria. The non-monetary criteria were initially developed and assigned relative weightings in Workshop 1. Then in Workshop 2, the criteria were revisited and revised. The weightings are numerical fractions of 1.00 that were derived in a criteria-prioritization exercise that was held among Workshop 2 participants. The results are shown in Table 4. The alternatives were later scored against the criteria based on a high probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) or low probability of meeting or exceeding current and future needs (high score) further in Section 1.4.3.

TABLE 4

Results of Developing and Weighting Non-Monetary Criteria Used in Alternatives Evaluation

Criteria No.	Evaluation Criteria	Criteria Weights	Criteria Description			
1	Ease of operation	9.1	Relative ease of operating the technologies involved in each alternative, compared to existing operations. Technologies considered easier to operate receive higher score.			
2	Carbon footprint	3.6	An estimate of the amount of greenhouse gas (GHG) emissions that would be emitted as a result of implementing each of the alternatives. Lower GHG emissions receive higher score.			
3	Timeline for implementation	14.5	Estimated time required to implement each alternative, relative to other alternatives. Alternatives with faster timeline receive higher score.			
4	Location of the technology	1.8	Flexibility to locate the facilities involved in each alternative at any one of three possible locations (JDWWTP, MWWTP, and Capitol Landfill) relative to other alternatives. Alternatives with greater location flexibility receive higher score.			
5	Logistics of transport	7.3	Ease or difficulty in which end product from each alternative (dewatered cake dried solids, or ash) can be transported, relative to other alternatives. Alterna with end products considered easier to transport receive higher score.			
6	Public health & safety issues	18.2	Possibility of each alternative to create public health or safety issues relative to the other alternatives. Greater possibility of creating issues results in lower score.			
7	Environmental & permitting issues	7.3	Likelihood of each alternative to encounter environmental or permitting problems, relative to the other alternatives. Higher likelihood of problems results in lower score.			
8	Risk	16.4	The amount of risk associated with implementing each alternative, from the perspectives of new technology, process complexity, and possibility of failure during operations, relative to the other alternatives. Alternatives with higher risk receive lower score.			
9	End product disposal method	10.9	Likelihood of each alternative to experience ease or difficulty with end product disposal. Greater anticipated difficulty results in lower score.			
10	Energy consumption & sourcing	10.9	Estimated amount of energy and source of energy required by each alternative compared with the other alternatives. Higher score to alternatives with lower energy requirements and higher scores to alternatives that can create energy or use local energy sources.			
	Total Weight	100.0				

4.1.2 Carbon Footprint Estimates and Comparisons between Alternatives

"Carbon Footprint" is the term used to express and compare a facility's estimated contribution to global warming via its estimated emissions of greenhouse gases (GHG's) to the atmosphere. A number of GHG's have been identified as contributors to global warming, but the only GHG's of consequence in wastewater treatment and biosolids management are the following three gases:

- 1. **Carbon dioxide (CO₂)**: The most common GHG; all other GHG's are converted to carbon-dioxide equivalents (CO₂e) when estimating total GHG emissions.
- 2. **Methane (CH₄): The** next most common GHG found in wastewater and biosolids after carbon dioxide, methane is the primary gas product of anaerobic respiration, and is 23 times more potent than carbon dioxide as a GHG. Therefore one unit of methane = 23 units of CO₂e.
- 3. Nitrous oxide (N₂O): The least common of the three GHG's associated with wastewater and biosolids, nitrous oxide is a by-product of nitrification and denitrification reactions. Even though nitrous oxide is

typically emitted in smaller amounts than carbon dioxide and methane, it is 300 times more potent than carbon dioxide as a GHG. One unit of nitrous oxide = 300 units of CO₂e.

The summation of these three GHG's, when all are converted to CO₂e, represents the total estimated Carbon Footprint of an alternative. The Total Carbon Footprint consists of direct and indirect emissions of CO2e, which are categorized in the following three groups for purposes of estimating total GHG emissions:

- Scope 1 GHG emissions These are the direct emissions of GHG's arising from a process or activity. However, CO₂ emitted as a result of natural biological activity, known as "biogenic CO₂ emissions" are not typically counted as part of the total carbon footprint. CO₂ emissions resulting from combustion of fossil fuels, known as "anthropogenic CO₂ emission," are typically counted in the total carbon footprint. All of the carbon dioxide emitted from fossil-fuel based engines or processes is included in Scope 1 GHG emissions. In addition, all methane and nitrous oxide emissions from these processes are counted as Scope 1 GHG emissions, whether or not the methane or nitrous oxide is emitted from biogenic or anthropogenic sources in the processes.
- Scope 2 GHG Emissions These are indirect emissions of GHG's resulting mostly from combustion of fossil fuels used to produce electrical power, heat, or steam that is delivered to an activity or process. Since the primary electrical power in Juneau is produced by hydro-powered turbines, the fossil fuel use in power production is negligible, and Scope 2 emissions are therefore negligible for purposes of this comparison.
- 3. Scope 3 GHG Emissions These are indirect emissions of GHG's resulting from the production of purchased chemicals and materials, and the uses of end products produced by an alternative. Scope 3 emissions tend to be remote from the source of an activity or process. Scope 3 GHG emissions are not considered in the following estimates of GHG emissions, or Carbon Footprint, associated with the four alternatives being evaluated.

Based on the explanations given above, only Scope 1 (Direct) GHG emissions were considered when comparing the Carbon Footprint of each alternative being evaluated. Results of the Carbon Footprint estimates are shown in Table 5.

Alternative	Estimated GHG Emissions (CO₂e) in metric tons per year (Mg/year), based on Scope 1 (Direct) GHG Emissions
1- Status Quo	2,700
2- Thermal Dryer Fueled No. 2 Heating Oil	1,900
3- Thermal Dryer + Combustion for Energy Recovery	980
4- Direct Combustion via Fluidized-Bed Incinerator (FBI)	1,200

TABLE 5

Estimated Annual Greenhouse Gas (GHG) Emissions (Carbon Footprint) of Each Alternative

As shown in Table 5, Alternative 3 – Thermal Dryer with Energy Recovery System, is estimated to have the lowest Scope 1 emissions of GHG's, i.e., the smallest Carbon Footprint, of the four alternatives. The primary reason for Alternative 3 having the smallest Carbon Footprint is because it uses dried biosolids for combustion and heat recovery to help fuel the biosolids dryer, thereby substantially reducing the amount of fossil fuel (No. 2 heating oil) needed to dry or combust biosolids, when compared with Alternatives 2 and 4, respectively. Alternative 1 – Status Quo, has the highest Carbon Footprint primarily because landfilling of

biosolids results in anaerobic activity and high emissions of methane from the landfill. Additionally, fossil fuels are used to transport biosolids from the MWWTP and JDWWTP first by truck, barge, and rail, prior to being landfilled in the State of Oregon, thereby contributing to the large Carbon Footprint of Alternative 1.

4.1.3 Non-Monetary Comparison of Alternatives

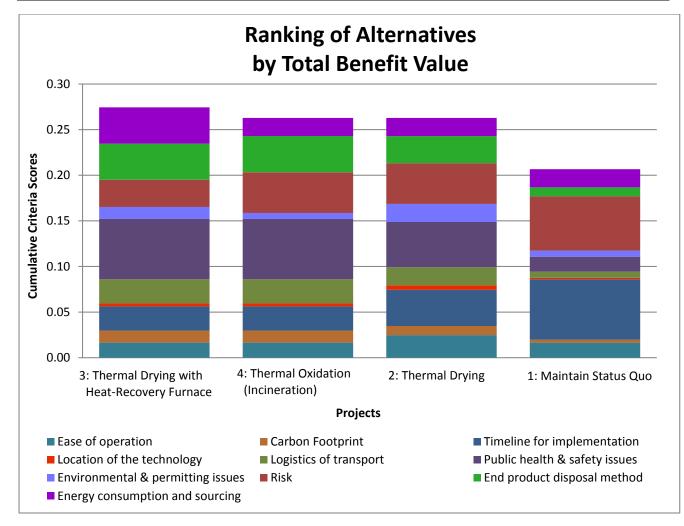
Each of the four alternatives non-monetary criteria were ranked by CBJ and CH2M HILL staff. The results of these rankings are shown in Table 6 and Figure 6. A score of "5" indicates the highest possible score, in that the alternative shown would rank highest in being able to meet the criterion described. Conversely, a score of "1" indicates the lowest possible score for an alternative to satisfy that criterion.

Criteria Number	1	2	3	4	5	6	7	8	9	10	Total Score
Criteria Name	Ease of Operation	Carbon Footprint	Timeline	Location	Transport	Public Health	Permitting	Risk	Disposal	Energy	
Weight	9.1	3.6	14.5	1.8	7.3	18.2	7.3	16.4	10.9	10.9	
1: Maintain Status Quo	2	1	5	1	1	1	1	4	1	2	20.7
2: Thermal Drying	3	3	3	3	3	3	3	3	3	2	26.3
3: Thermal Drying with Heat- Recovery Furnace	2	4	2	2	4	4	2	2	4	4	27.4
4: Thermal Oxidation (Incineration)	2	4	2	2	4	4	1	3	4	2	26.3

Results of Developing and Weighting	Non-Monetary Crite	ria Used in Alternatives Evaluation
Results of Developing and Weighting	, non monetary crite	

A graphical depiction of the alternative rankings with respect to non-monetary criteria is shown in Figure 6.

As shown, Alternative 3 (Dryer and Heat-Recovery Furnace), ranked highest in non-monetary terms, Alternative 2 (Thermal Drying), followed by Alternative 4 (Incineration) ranked next highest, and finally, ranked last, is Alternative 1 (Continued Status Quo of Landfill Disposal). The non-monetary criteria rankings shown in Table 6 and Figure 6 apply to either the MWWTP or JDWWTP facility location.


The cost estimates for each alternative change slightly depending on whether the biosolids treatment facility is located at the MWWTP or JDWWTP, as described in the next section of this TM.

4.1.4 Methodology for Cost Estimation

Cost estimates including capital costs, annual operation and maintenance (O&M) costs, and net present value, also were developed. All costs were derived using the same level of estimating accuracy and are therefore comparable. Actual construction costs may differ from the estimates presented, depending on specific design requirements and the economic climate at the time a project is bid. The American Association of Cost Engineers (AACE) has developed levels of accuracy for various stages of construction cost estimation. The estimates produced for the current comparison are Class 5, with a corresponding project definition level of 0-2% and expected level of accuracy of 20-50% below and 30-100% above the cost given.

Basic cost assumptions are shown in Table 7.

TABLE 6

FIGURE 6

Stacked Bar Chart Display of Non-monetary Criteria Rankings of Alternatives 1-4

TABLE 7

CBJ Reference Unit Costs

Effective Discount Rate, %	3%
Inflation Rate	2%
Discount Rate, %	5%
Planning Period (and Finance Period), years	20
Power Cost, \$/kWH	\$0.0750 ¹
Staffing Cost, \$/hr	\$45.00
Staffing Cost, \$/FTE/yr	\$93,600
Building Cost (with odor control), \$/sf	\$200
No. 2 Fuel Oil \$/MMBtu	\$31

¹ Current Cost from CBJ.

4.1.5 Cost Comparison of Alternatives

Capital cost estimates for each of the alternatives are included in Table 8 and Table 9. Capital cost components for alternatives 2-4 were taken directly from vendor provided information. For the Status quo option, it is assumed that some investment in additional equipment would be required and a placeholder amount has been included. Other costs and markups have been calculated as a percentage of the capital investment, based on standard market practice. The capital costs vary slightly depending on whether the alternative would be located at the MWWTP or JDWWTP, as shown by comparing Tables 8 and 9. For example, if the biosolids treatment facility is located at the JDWWTP, it will require larger truck-loading and biosolids storage facilities, because of the greater volume of biosolids that would be trucked in from the MWWTP.

It is assumed that all capital costs are incurred over the initial two years of the project period. Then annual O&M costs are projected over the 20-year life-cycle. Cost estimates were reviewed and revised in Workshop 2.

The construction cost estimates shown in Tables 8 and 9 are conservative and include large contingencies, which are required for Class 5 cost estimates.

The annual Operations and Maintenance (O&M) costs shown in Table 10 and Table 11 were also taken directly from vendor provided information for alternatives 2-4 and using the unit costs shown in Table 7. An annual maintenance and repairs allocation was included in each of the vendor quotes to address wear and tear of equipment. The O&M costs for the status quo option are based on estimates of hauling and landfill costs per wet ton and may not accurately depict all of the costs currently incurred by CBJ. Similar to capital costs, O&M costs for each facility location are slightly different because the amounts of biosolids trucked between WWTPs differs depending on location, as shown by comparing Tables 10 and 11.

The total combined cost of capital investment and O&M was then summarized to calculate the net present worth of each alternative, assuming a 20-year planning period. The total cost of each alternative in today's dollars is shown in Table 12 for the MWWTP facility location, and Table 13 for the JDWWTP facility location.

A graphical depiction of these values is provided in Figure 7 and Figure 8, which show the breakdown of capital vs. O&M costs for each alternative. In order to create a meaningful comparison for discussion, all of the new alternatives are shown relative to the status quo alternative, which is represented as a baseline 100% relative cost. Figure 7 represents the MWWTP facility location, and Figure 8 represents the JDWWTP location.

4.1.6 Benefit-cost Comparison of Alternatives

The non-monetary criteria discussed in Section 4.1.3 were then combined with the total costs to produce a Benefit-cost score, shown in Tables 14 and 15, for the MWWTP and JDWWTP facility locations, respectively. In this evaluation, following the traditional procedure for Benefit/Cost evaluations, the total non-monetary scores were assigned a 50% weighting and the NPV scores were assigned the remaining 50% weighting in computing the Benefit/Cost scores of each alternative. As with the O&M and capital cost comparisons, each of the new alternatives is shown as having a higher or lower benefit-cost score than the Status Quo alternative, which is assigned a 100% baseline score.

Figures 9 and 10 depict the relative Benefit/Cost scores of each alternative in bar chart format.

As shown in the figures and tables above, Alternative 2 (Thermal Drying) and Alternative 3 (Thermal Drying with Energy-Recovery System) are in a virtual tie for highest rank when all factors are considered, with Alternatives 1 and 4 ranking markedly lower than Alternatives 2 and 3. The next section summarizes the rationale for recommending one alternative among these two, highest-ranking alternatives.

5.1 Recommended Alternative

The Benefit/Cost analysis conducted in the previous section concluded that the following two alternatives are virtually tied with the highest Benefit/Cost Scores:

- Alternative 2 Thermal Drying
- Alternative 3 Thermal Drying with Heat-Recovery Furnace (energy recovery system)

The Non-monetary Benefits comparison shown in Figure 6 concluded that Alternative 3 scored the highest, while the cost comparisons shown in Tables 12 and 13 indicate that Alternative 2 has a slightly lower NPV than Alternative 3. There is a marked contrast, however, between Alternatives 2 and 3 when their relative capital costs and O&M costs are compared as shown in Figures 7 and 8. Alternative 2 has a significantly lower capital cost and significantly higher O&M cost than Alternative 3.

There are some technology and regulatory risks associated with Alternative 3 that are not associated with Alternative 2. For example, Alternative 3 is still considered innovative technology because there is only one other facility in North America that uses a thermal dryer with heat-recovery furnace, which is located in Buffalo, Minnesota. Also, there may be air-emissions permitting challenges associated with Alternative 3, which involves combustion of biosolids, which compared to Alternative 2, which only requires drying of biosolids.

The recommended alternative depends largely on CBJ's access to sufficient capital to fund the additional equipment required for Alternative 3, namely the heat-recovery furnace equipment and accessories. If CBJ has sufficient capital funds to pay for the higher capital cost of Alternative 3, then substantial annual savings can be achieved by reduction of O&M costs associated with Alternative 3. Also, if an opportunity exists to defray the capital costs through grant funding, Alternative 3 would be the most desirable alternative to implement, because the investment in higher capital for Alternative 3 would substantially reduce CBJ's annual O&M costs.

Therefore, **Alternative 3** – Thermal Drying with Heat-Recovery Furnace (energy recovery system) is the recommended alternative for implementation.

Capital Cost Component	Alternative 1	Alternative 2	Alternative 3	Alternative 4
ABF Building Demolition		\$75,000	\$75,000	\$75,000
Thermal Dryer		\$2,898,000		
Thermal Dryer/Energy Recovery Furnace			\$5,840,000	
Fluidized Bed Incineration				\$14,342,178
Post Dewatering sludge storage		\$500,000	\$500,000	\$500,000
Dried Product/Ash Silo		\$500,000	\$500,000	\$250,000
General solids conveyance		\$500,000	\$500,000	\$500,000
New Building		\$2,240,000	\$2,240,000	\$2,240,000
Rolling stock and equipment	\$1,500,000			
Subtotal Construction/Installation Cost	\$1,500,000	\$6,713,000	\$9,655,000	\$17,907,178
Additional Project Costs				
Site Work		\$134,260	\$193,100	\$358,144
Installation (10% of equipment cost)		\$289,800	\$584,000	\$1,434,218
Plant Computer System, I&C		\$335,650	\$482,750	\$895,359
Yard Electrical		\$537,040	\$772,400	\$1,432,574
Yard Piping		\$335,650	\$482,750	\$895,359
Subtotal	\$0	\$1,632,400	\$2,515,000	\$5,015,653
Other Markups				
Overhead	\$150,000	\$834,540	\$1,217,000	\$2,292,283
Profit	\$82,500	\$458,997	\$669,350	\$1,260,756
Mobilization/Bonds/Insurance	\$86,625	\$481,947	\$702,818	\$1,323,794
Contingency (30%)	\$545,738	\$3,036,265	\$4,427,750	\$8,339,899
Location Adjustment Factor (18% above 100% for CBJ)	\$425,675	\$2,368,287	\$3,453,645	\$6,505,121
Subtotal	\$1,290,538	\$7,180,036	\$10,470,563	\$19,721,853
Non-Construction Costs				
Permitting	\$55,811	\$310,509	\$452,811	\$852,894
Engineering	\$251,148	\$1,397,289	\$2,037,651	\$3,838,022
Services During Construction		\$776,272	\$1,132,028	\$2,132,234
Commissioning & Startup		\$465,763	\$679,217	\$1,279,341
Land / ROW				
Legal / Admin	\$55,811	\$310,509	\$452,811	\$852,894
Subtotal Non-Construction	\$362,770	\$3,260,342	\$4,754,518	\$8,955,384
Total Construction Cost Estimates	\$3,200,000	\$18,800,000	\$27,400,000	\$51,600,000

TABLE 8 Capital Cost Breakdown of Alternatives for MWWTP Facility Location

Capital Cost Component	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Incinerator Building Demolition		\$75,000	\$75,000	\$ 75,000
Thermal Dryer		\$2,898,000		
Thermal Dryer/Energy Recovery Furnace			\$5,840,000	
Fluidized Bed Incineration				\$14,342,178
Post Dewatering sludge storage		\$1,000,000	\$1,000,000	\$1,000,000
Dried Product/Ash Silo		\$500,000	\$500,000	\$250,000
General solids conveyance		\$500,000	\$500,000	\$500,000
New Building		\$2,240,000	\$2,240,000	\$2,240,000
Rolling stock and equipment	\$1,500,000			
Subtotal Construction/Installation Cost	\$1,500,000	\$7,213,000	\$10,155,000	\$18,407,178
Additional Project Costs				
Site Work		\$144,260	\$203,100	\$368,144
Installation (10% of equipment cost)		\$289,800	\$584,000	\$1,434,218
Plant Computer System, I&C		\$360,650	\$507,750	\$920,359
Yard Electrical		\$577,040	\$812,400	\$1,472,574
Yard Piping		\$360,650	\$507,750	\$920,359
Subtotal	\$0	\$1,732,400	\$2,615,000	\$5,115,653
Other Markups				
Overhead	\$150,000	\$894,540	\$1,277,000	\$2,352,283
Profit	\$82,500	\$491,997	\$702,350	\$1,293,756
Mobilization/Bonds/Insurance	\$86,625	\$516,597	\$737,468	\$1,358,444
Contingency (30%)	\$545,738	\$3,254,560	\$4,646,045	\$8,558,194
Location Adjustment Factor (18% above 100% for CBJ)	\$425,675	\$2,538,557	\$3,623,915	\$6,675,391
Subtotal	\$1,290,538	\$7,696,251	\$10,986,778	\$20,238,068
Non-Construction Costs				
Permitting	\$55,811	\$332,833	\$475,136	\$875,218
Engineering	\$251,148	\$1,497,749	\$2,138,110	\$3,938,481
Services During Construction		\$832,083	\$1,187,839	\$2,188,045
Commissioning & Startup		\$499,250	\$712,703	\$1,312,827
Land / ROW				
Legal / Admin	\$55,811	\$332,833	\$475,136	\$875,218
Subtotal Non-Construction	\$362,770	\$3,494,747	\$4,988,923	\$9,189,789
Total Construction Cost Estimates	\$3,200,000	\$20,100,000	\$28,700,000	\$53,000,000

TABLE 9	
Capital Cost Breakdown of Alternatives for JDWWTP Facility Locatio	n

O&M Costs	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Cake Hauling Between plants		\$34,188	\$34,188	\$35,328
Truck loading of product (\$20/wet ton)	\$142,194			
Hauling of product (\$20/ wet ton)	\$142,194	\$24,533	\$3,312	\$3,312
Landfill of product (\$215/wet ton for combined barge/landfill)	\$1,531,355			
Product sales				
Dryer O&M		\$181,942	\$304,569	
Incinerator O&M				\$380,444
Electricity		\$30,985	\$48,153	
Fuel		\$640,406 ¹	\$139,166 ²	\$197,309 ¹
Total OM \$/yr	\$1,816,258	\$912,055	\$529,388	\$616,392
Contingency on O&M cost (10%)	\$181,626	\$91,205	\$52,939	\$61,639
Total Avg Annual OM \$/yr (Current Unit Prices)	\$1,998,000	\$1,003,000	\$582,000	\$678,000

TABLE 10 Annual O&M Cost Breakdown of Alternatives for MWWTP Facility Location

¹No. 2 Fuel Oil

² Supplemental Wood Chips

TABLE 11

Annual O&M Cost Breakdown of Alternatives for JDWWTP Facility Location

O&M Costs	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Cake Hauling Between plants		\$108,263	\$108,263	\$111,872
Truck loading of product (\$20/wet ton)	\$142,194			
Hauling of product (\$20/ wet ton)	\$142,194	\$24,533	\$3,312	\$3,312
Landfill of product (\$215/wet ton for combined barge/landfill)	\$1,531,355			
Product sales				
Dryer O&M		\$181,942	\$304,569	
Incinerator O&M				\$380,444
Electricity		\$30,985	\$48,153	
Fuel		\$640,406 ¹	\$139,166 ²	\$197,309 ¹
Total OM \$/yr	\$1,816,258	\$986,130	\$603,463	\$692,936
Contingency on O&M cost	\$181,626	\$98,613	\$60,346	\$69,294
Total Avg Annual OM \$/yr (Current Unit Prices)	\$1,998,000	\$1,085,000	\$664,000	\$762,000

¹No. 2 Fuel Oil

² Supplemental Wood Chips

Alternative Number	Name of Alternative	NPV of Capital Cost	NPV of Annual O&M Costs	Total NPV
1	Maintain Status Quo	\$2,700,000	\$32,200,000	\$34,900,000
2	Thermal Drying	\$18,300,000	\$16,100,000	\$34,400,000
3	Thermal Drying with Heat-Recovery Furnace	\$26,600,000	\$9,400,000	\$36,000,000
4	Thermal Oxidation (Incineration)	\$50,200,000	\$10,900,000	\$61,100,000

TABLE 12 Net Present Value (NPV) Cost Estimates of the Alternatives for MWWTP Facility Location

TABLE 13

Net Present Value (NPV) Cost Estimates of the Alternatives for JDWWTP Facility Location

Alternative Number	Name of Alternative	NPV of Capital Cost	NPV of Annual O&M Costs	Total NPV
1	Maintain Status Quo	\$2,700,000	\$32,200,000	\$34,900,000
2	Thermal Drying	\$19,500,000	\$17,500,000	\$37,000,000
3	Thermal Drying with Heat-Recovery Furnace	\$27,900,000	\$10,700,000	\$38,600,000
4	Thermal Oxidation (Incineration)	\$51,500,000	\$12,300,000	\$63,800,000

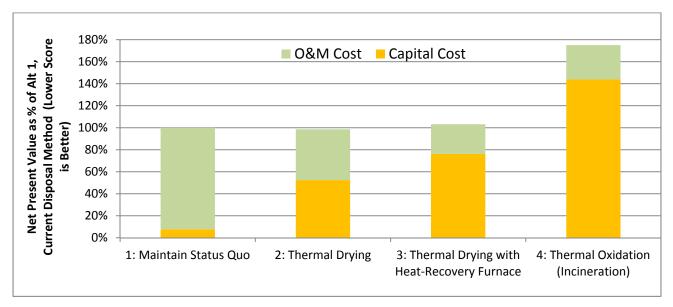
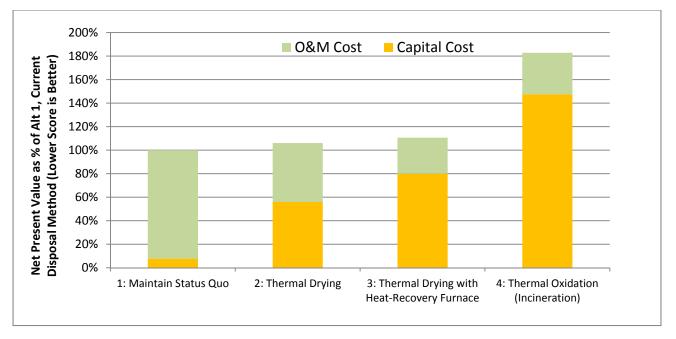



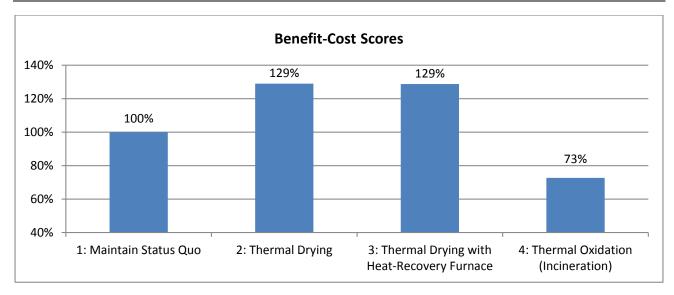
FIGURE 7

Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for MWWTP Facility Location

FIGURE 8

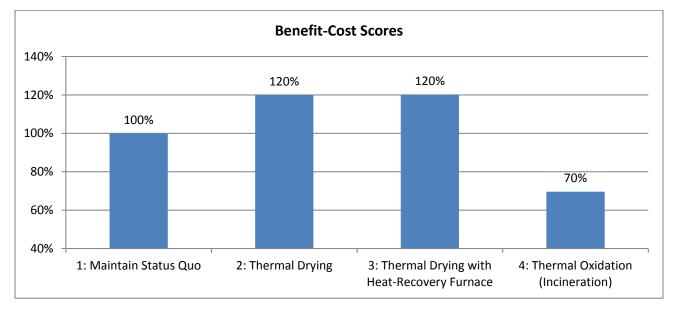
Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for JDWWTP Facility Location

TABLE 14


Benefit-cost Score of Alternatives for MWWTP Location

Project Title	Capital & O&M NPV	Non-monetary Benefit Score	Benefit-Cost Score	Benefit-Cost Score Relative to Status Quo
1: Maintain Status Quo	\$34,900,000	20.66	0.59	100%
2: Thermal Drying	\$34,400,000	26.28	0.76	129%
3: Thermal Drying with Heat-Recovery Furnace	\$36,000,000	27.44	0.76	129%
4: Thermal Oxidation (Incineration)	\$61,100,000	26.28	0.43	73%

TABLE 15


Benefit-cost Score of Alternatives for JDWWTP Location

Project Title	Capital & O&M NPV	Non-monetary Benefit Score	Benefit- Cost Score	Benefit-Cost Score Relative to Status Quo
1: Maintain Status Quo	\$34,900,000	20.66	0.59	100%
2: Thermal Drying	\$37,000,000	26.28	0.71	120%
3: Thermal Drying with Heat-Recovery Furnace	\$38,600,000	27.44	0.71	120%
4: Thermal Oxidation (Incineration)	\$63,800,000	26.28	0.41	70%

FIGURE 9

Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for MWWTP Facility Location

FIGURE 10

Benefit-Cost Scores for All Alternatives Relative to Status Quo Option for JDWWTP Facility Location

Biosolids Treatment and Disposal Evaluation–Phase II Long Term Plan and Operating Strategies

PREPARED FOR:City/Borough of Juneau (CBJ), AlaskaPREPARED BY:CH2M HILLDATE:September 4, 2014

1.1 Introduction

Objectives of this Technical Memorandum 3 (TM3) are:

- 1. To describe the recommended alternative in detail
- 2. To describe potential operating strategies for the recommended plan
- 3. To describe phasing alternatives for the recommended plan, with associated implementation schedules.

This TM will describe the recommended long-range biosolids management plan, based on the work summarized in prior TMs 1 and 2, and the decisions made at Workshops 1 and 2.

2.1 Recommended Alternative

TM2 (Alternatives Evaluation and Results) summarized the methodology and results of the alternatives evaluation, and presented additional issues to consider in selecting and implementing an alternative. Workshop 2 was held with CBJ on July 8-9, 2014, to discuss TM2 and the results of the evaluation. CH2M HILL made revisions to TM2 to reflect the decisions of Workshop 2, and delivered the revised draft of TM2 to CBJ on July 16, 2014. Review comments on TM2 were received from CBJ on July 29, 2014. This section summarizes the current status of decisions made relative to the recommended alternative and its potential variations.

2.1.1 Results of Alternative Evaluation Workshop

The following four alternatives were evaluated in detail in TM2 and discussed in Workshop 2:

- 1. Continuation of the current practice of shipping dewatered biosolids from the JDWWTP and the MWWTP by barge to Oregon for landfill disposal (also known as the "status quo" or "base case" alternative).
- 2. **Thermal drying** of biosolids at a central facility with local disposal or marketing of the dried, Class A biosolids product.
- 3. Thermal drying of biosolids followed by combustion (incineration) of the biosolids to recover heat that is then recirculated to the biosolids drying process, thus reducing the amount of purchased fuel (**thermal drying with heat recovery**).
- 4. **Thermal oxidation (incineration**) of the biosolids in a new fluidized-bed incinerator that recovers heat from the combusted biosolids to aid in evaporation and reduce the amount of purchased fuel.

Alternatives 2, 3 and 4 were evaluated assuming one of two locations for a centralized biosolids management facility. In the first case, the biosolids management facility is assumed to be located at the CBJ's Mendenhall Wastewater Treatment Plant (MWWTP). In the second case, the biosolids management facility is assumed to be located at the Juneau-Douglas WWTP (JDWWTP). Figures 1 and 2 show the results of the Benefit-Cost analysis and comparison of the four alternatives, assuming that the biosolids

management facility is located at either the MWWTP or the JDWWTP, respectively. In this Benefit-Cost Analysis, each alternative is compared with Alternative 1 (Status Quo) which was assigned a relative score of 100%. The relative benefits and costs of each alternative are each given 50% of the total score, with the result that the alternative with the best combination of low costs and high benefits shows the highest total Benefit-Cost score.

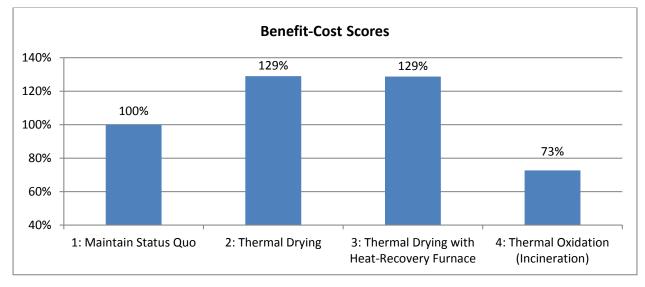
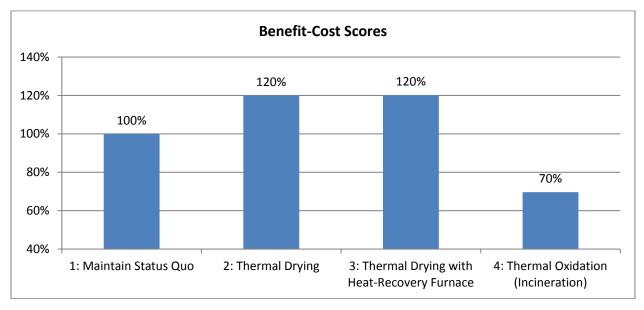



FIGURE 1 Benefit-Cost Scores of Alternatives 1-4 with Biosolids Management Facility at MWWTP

FIGURE 2

Benefit-Cost Scores of Alternatives 1-4 with Biosolids Management Facility at JDWWTP

In each case shown above, Alternatives 2 and 3 both result in higher Benefits-Cost scores than the Status Quo, by significant percentages of 26-39% higher scores, while Alternative 4 shows a significantly lower Benefits-Cost score. The differences between the Benefits-Cost scores of Alternatives 2 and 3 are minimal and smaller than the accuracy of the estimating tool.

Another factor that plays heavily into the decision-making process is a comparison of Net Present Worth (NPW) between alternatives, as shown in Figures 3 and 4. In these figures, the capital and O&M costs are further separated into annual operations and maintenance (O&M) and capital cost components. This

comparison shows that Alternatives 2 and 3 both have slightly lower NPW's than Alternative 1 (Status Quo). Although Alternative 3 has a slightly higher NPW than Alternative 2, its O&M cost component is significantly lower.

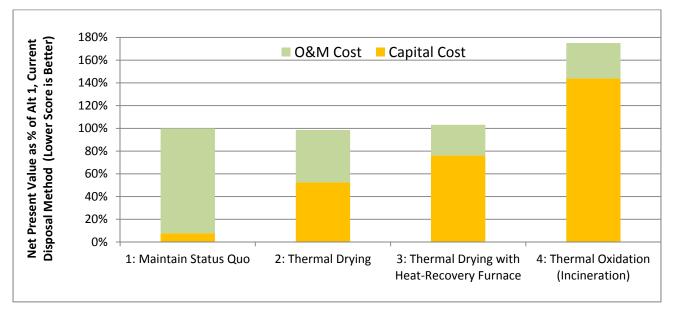


FIGURE 3

Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for MWWTP Facility Location

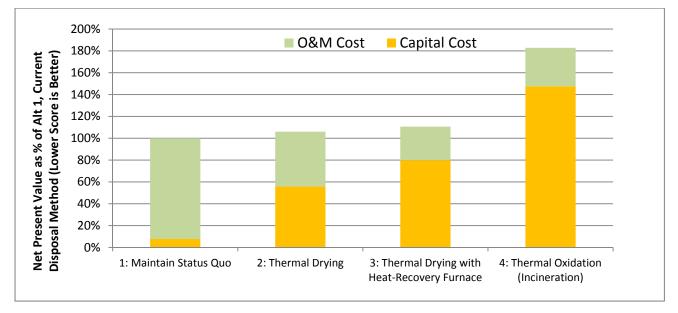


FIGURE 4

Net Present Value of Capital and O&M Costs for All Alternatives Relative to Status Quo Option for JDWWTP Facility Location

Another important factor in the comparison of alternatives is "carbon footprint," which is an assessment of the potential for greenhouse gas (GHG) emissions associated with each alternative. A basic estimation of direct (Scope 1) GHG emissions associated with each alternative indicates that Alternative 3 has a substantially lower estimate of GHG emissions (i.e., carbon footprint) than Alternative 2. This is primarily because Alternative 2 depends on a fossil fuel (No. 2 heating oil) to dry the biosolids, while Alternative 3 creates a renewable fuel (dried biosolids pellets) that can be combusted as a fuel source, and renewable wood chips are used as a fuel supplement if the fuel value of dried biosolids is not enough to drive the drying process.

When all factors were taken into consideration including non-monetary criteria such as carbon footprint, capital costs, and annual O&M costs, **Alternative 3 – Thermal Drying with Heat-Recovery Furnace**, was selected as the most desirable long-term biosolids management alternative for Juneau going forward.

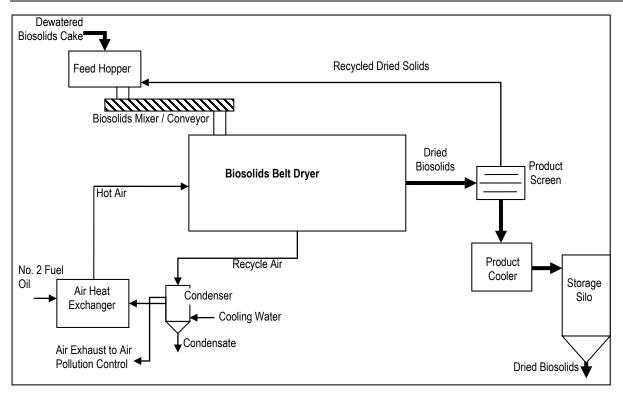
2.1.2 Description of Recommended Alternative

The recommended alternative utilizes thermal drying to substantially decrease the water content of the sludge prior to thermal oxidation. With the addition of a furnace, energy is recovered by using the dried biosolids as the primary fuel for the furnace, which in turns heats the air that dries the biosolids. Additional energy is recovered by a heat exchanger system which extracts heat from the drying process. The final product of the dryer/furnace combination is an inert ash at > 98% solids content.

Wood pellets would be needed to supplement the dried biosolids as fuel for the furnace under most operating conditions, because the dried biosolids do not always provide enough heat to dry the biosolids. The dryer could also operate using only wood pellets as fuel, and produce dried biosolids pellets at 90% solids for other beneficial uses. Finally, the dryer could use an oil burner as its heat source rather than a furnace, but in that case, No. 2 heating oil would be the only fuel used for providing the heat to dry to the biosolids, and there would not be an option for using dried biosolids or wood pellets as fuel.

The recommended alternative therefore includes a furnace that will combust biosolids and wood pellets to produce heat for drying the biosolids, thereby avoiding the use of fossil fuels in the heat drying process.

2.1.2.1 Belt Dryer


The type of dryer upon which the recommended alternative is based is a belt dryer, chosen because it was the best fit among other dryer alternatives for CBJ's projected biosolids loading rates. The belt dryer is also one of the safest dryers on the market because it operates at the lowest temperature range of available biosolids dryers.

Belt dryers use direct contact of circulating hot air with wet solids extruded onto and conveyed by a slowly moving horizontal belt housed in a metal enclosure. The wet material moves through several drying chambers, where the moisture is released into the circulating air. After passing through the drying chambers, the dried solids fall from the belt into a hopper and are conveyed to a loading or storage facility.

Each drying zone has its own circulating fans and air temperature control. Excess moisture is removed from the air stream in a saturator. Heat for the air circulation loop in each zone is provided in a heat exchanger by indirect contact with steam, hot water, thermal oil, or hot air serving as the heat source. The drying temperatures are typically controlled at approximately 300°F at the belt entry and at 210°F at the belt discharge. The solids are typically heated to 170°F. The lower drying temperature usually produces a less odorous exhaust stream, and the drying process is less prone to accidental combustion than rotary drum dryers, which operate at much higher temperatures.

Dried biosolids produced by the dryer are composed of fragments that are non-uniform in shape, with sizes between 1 and 10 mm across. A screen is sometimes used to produce a more uniform product size. A pelletizer must be added if smaller pellets of uniform size are desired. Since the sludge is not excessively moved in this system, dust formation is reduced in the dryer itself, although dust may form in subsequent handling of the dried product. Figure 5 presents a schematic diagram of a typical belt dryer system.

Belt dryers are available from Andritz, Kruger, and Huber. Kruger belt dryers were first installed in Europe in 1995, and Andritz's first belt dryer was installed in Europe in 2002. At present there are at least twenty Kruger and about the same number of Andritz belt dryers either in operation or development worldwide, while Huber follows with approximately ten belt dryer installations in operation or development worldwide. Of the worldwide installations, Kruger has five belt dryer installations in the USA, Huber has two belt dryer installations to date.

FIGURE 5 Belt Dryer Schematic Diagram

2.1.2.2 Heat-recovery Option for Belt Dryer

The belt dryer operating with a heat-recovery furnace has reduced operational costs when compared to the dryer alone. The dryer alone has a much higher external-fuel requirement, while the heat-recovery furnace can provide most of the heat needed for drying by combustion of the dried product with the heat recovered from combustion. Dewatered solids are stored in the cake-storage silo until there is enough to conduct a dryer run. Solids are pumped into an extrusion device and distributed on the belt. The cake solids are dried with hot air from the furnace which, in this case combusts dried biosolids.

The heat-recovery option requires a higher level of maintenance and also requires disposal of ash. These elements are offsetting but result in significantly lower O&M costs for the heat-recovery option when compared with the standard belt dryer. The heat value of the dried biosolids is a function of the volatile solids content of the solids, and has a large impact on the predicted operating cost. Based on the volatile solids content of 85-90% found at CBJ's WWTPs, the dried sludge will provides at least 80% of the heat requirement of the dryer. Should the total solids content of the dewatered solids increase from current values, the heat-recovery furnace may provide all of the heat requirement of the belt dryer.

Supplemental fuel for the furnace is still needed for the thermal dryer with heat-recovery furnace, because of the relatively high water content of biosolids produced by the belt filter presses at JDWWTP and MWWTP. Heat is recovered from the water in the dryer exhaust and used to preheat the biosolids going into the dryer, but the air from the furnace provides the primary source of heat to the dryer. The dryer and furnace exhausts are scrubbed to remove any pollutants and discharged to the atmosphere. The resulting ash can be mixed with soil to use in landfill cover or used as a substitute for fly ash in concrete production. If the dried pellets are not incinerated, they may be used as fertilizer or soil amendment.

Each of the belt dryer manufacturers listed above offers a heat-recovery furnace option with its belt dryer, and each of them reports at least one installation of a belt dryer with heat-recovery furnace in Europe. Only one of the three belt-dryer manufacturers has a dryer with heat-recovery furnace operating in the USA,

however, and that is Kruger. The City of Buffalo, Minnesota, has operated a Kruger belt dryer with heatrecovery furnace since 2008, and it is sized for approximately 3 MGD of wastewater flow, similar to Juneau.

Figure 6 illustrates **Alternative 3 – Thermal Drying with Energy Recovery Furnace**, based on the Kruger BioCon-ERS process, upon which most of the technical and cost-estimating information was obtained for Alternative 3.

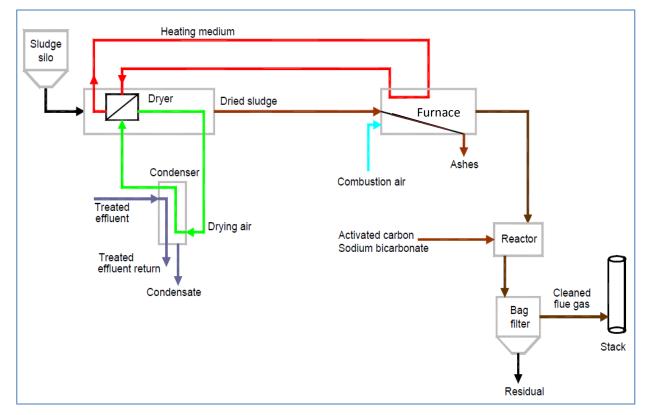


FIGURE 6

Simplified schematic Diagram of Alternative 3 – Thermal Drying with Energy Recovery Furnace, Based on Kruger BioCon-ERS Model

2.1.3 Planning and Siting Recommendations

There are two potential site locations for CBJ's biosolids drying facility, the MWWTP or the JDWWTP. The MWWTP produces almost 80% of CBJ's biosolids, so would be the logical choice for siting a central biosolids management facility to reduce the extent of biosolids hauling. However, the site at MWWTP is more constrained, and the Mendenhall Valley where the MWWTP is located is currently a non-attainment area for air emissions, which would likely increase the cost of permitting and air-emissions technology at the MWWTP. The JDWWTP site has more available space and a wider buffer from its adjacent properties, and is not as sensitive as the MWWTP site with respect to its air-permitting requirements.

The advantages and disadvantages of locating new facilities at the MWWTP or the JDWWTP are summarized below in Table 1:

Comparison Criteria	Mendenhall WWTP	Juneau-Douglas WWTP
Sludge Transported Annually	1710 wet tons	5413 wet tons
Distance to Landfill (Disposal Site)	4 miles	7 miles
Air Emissions/Permitting Issues	Complex (close neighbors, Mendenhall Valley non- attainment)	Not as complex (industrial district, had prior air emissions permit)
Infrastructure Needs	Need new building, must demolish existing building, constrained site	May be able to reuse part of Incineration/Dewatering Building, more space available
Construction Timeline	Likely longer due to restricted site access and more complex permitting	Likely shorter due to easier site access and less complex permitting
Resident/Neighbor Impacts	Nearby commercial and residential neighbors on all sides	Industrial area, no nearby residences, near cruise ship docks and 1 mile from downtown Juneau
NPV of Capital Costs	\$26.6 million	\$27.9 million
NPV of O&M Costs	\$9.4 million	\$10.7 million

TABLE 1

Advantages/	/Disadvantages	of Biosolids	Facility	location
Auvantages/	Disauvantages	or biosonius	racinty	Location

Locating a new biosolids drying facility at the MWWTP appears to be less costly than locating a biosolids drying facility at the JDWWTP at this point, because nearly 80% of CBJ's biosolids are produced at the MWWTP. Therefore, the JDWWTP facility capital cost includes larger bins for storing imported solids, and its O&M costs reflect higher volumes of dewatered solids that have to be transported from MWWTP to JDWWTP.

The JDWWTP facility location has several non-monetary advantages over the MWWTP location, however. It does not have neighbors in close proximity like the MWWTP does. The MWWTP neighbors have periodically filed complaints related to odors from the MWWTP. It is believed that the JDWWTP would be less subject to odor and nuisance complaints than the MWWTP, due to its location in an industrial zone next to a shipping dock and more land available for a buffer zone. Also it is believed that air emissions permitting may be less complex at the JDWWTP because a permitted incinerator previously operated on the site, and the MWWTP is in a non-attainment area for air particulates, potentially making an air emissions permit at MWWTP more stringent and difficult to obtain.

Figure 7 indicates where a new thermal drying facility with energy-recovery furnace could be located on the JDWWTP site. The system's space requirements are approximately 95 feet long by 75 feet wide. It is advantageous to locate the drying facility as close as possible to the dewatering equipment. The existing dewatering equipment at JDWWTP, which would remain in place, is represented by the small rectangle in the bottom left corner of the existing incinerator building. The new thermal drying facility is located just to the right of the existing dewatering equipment in Figure 7. The portion of the existing building that houses the de-commissioned incinerator would likely have to be demolished, and the new thermal drying facility installed inside a new building in its place, as shown in Figure 7.

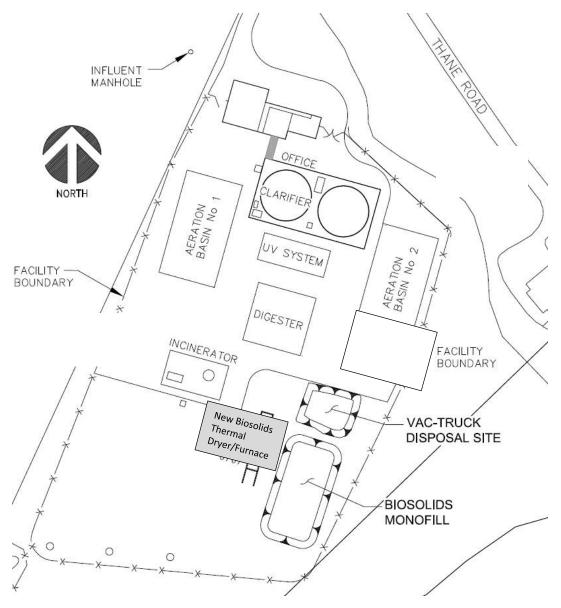


Figure 8 indicates where a new thermal drying facility with energy-recovery furnace could be located on an aerial photo of the MWWTP site. The blue line represents the approximate property boundary of the MWWTP and the new thermal drying facility is shown at the location of the existing ABF building. The building housing existing dewatering equipment at the MWWTP is shown in the lower right of the new thermal drying facility and would remain. The existing ABF Building at the MWWTP would need to be demolished to provide space for the new thermal drying facility, to be installed in a new building in its place, as shown in Figure 8.

FIGURE 8 Potential Location of Thermal Dryer with Energy Recovery Furnace at the MWWTP Site

A preliminary general-arrangement drawing of the recommended thermal drying facility with energyrecovery furnace is shown in Figure 9, which also indicates which equipment would be provided by the drying system vendor and which equipment would be provided by other parties (designated "by others").

3.1 Recommended Operating Strategies

This section describes operating strategies of five, similar belt-dryer installations in the USA, and provides recommendations for operating strategies at CBJ's future biosolids drying facility.

3.1.1 Operating Strategies at Similar Facilities

The operators of Kruger's five belt-drying facilities in the USA were contacted recently to determine how they operate their facilities, how long they have been operating, the typical weekly operating hours, the fuel source for the dryer, and the use of the dried product. Table 2 provides a summary of the findings from those belt-drying facilities.

None of the operating belt-dryer facilities reported any significant, unplanned downtime since startup. The heat-recovery furnace at Buffalo, MN, is currently out of service while ash-handling conveyors are being replaced; however, the belt dryer in Buffalo continues to operate on its normal schedule.

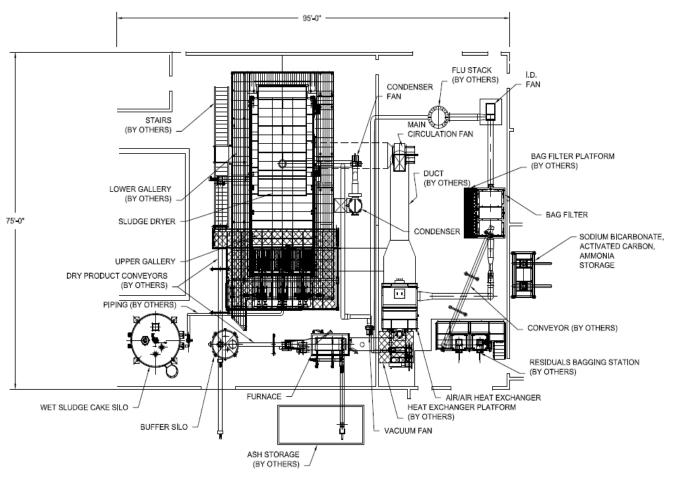


FIGURE 9 General Arrangement Drawing of Thermal Dryer with Energy Recovery Furnace

TABLE 2 Summary of Operating Belt Drying Facilities in the USA (dryers manufactured by Kruger)

Facility Location	Year of Start-up	WWTP size, MGD	Production (tons/year dried solids)	Dryer Capacity (wet pounds per hour)	Fuel Source	Normal Operating Schedule	Use of Product
Mystic Lake, MN	2006	0.64	367	1,100	Natural Gas	8 hrs/day, 5 days/week	Fuel for power plant
Buffalo, MN ¹	2008	3.0	1,512	3,300	Dried Biosolids (no backup fuel)	24 hrs/day, 7 days/week while solids are available	Ash is landfilled
LeSeuer, MN	2008	0.9	405	1,663	Natural Gas	24 hrs/day, 7 days/week while solids are available	Given to farmers
New Prague, MN	2010	2.5	1,190	6,083	Natural Gas	48-96 hrs straight, every other week	Given to farmers
Alderwood, WA	2013	6.0	1,036	3,300	Natural Gas	10 hrs/day, 5 days/week	Sold to fertilizer vendor

¹ Buffalo, MN, is the only belt drying system with a heat-recovery furnace operating in the USA to date.

The belt-drying facilities in Buffalo and New Prague, MN are oversized for their current loading rates. Coincidentally, both facilities have large volumes of pre-dewatering solids storage available. Consequently, they can store biosolids for 2-4 weeks while building up inventory for dewatering and drying operations. Once these facilities start up, they operate around-the-clock until the solids inventory is depleted. The Buffalo, MN, facility tends to operate in this manner for one period a month, and its operating period generally lasts about 10-12 days. The New Prague, MN, facility has less solids-storage capacity and so operates more frequently, typically for 48-96 hours each week.

The New Prague and Le Seuer facilities in Minnesota operate their belt dryers 24 hours per day when they have sufficient solids inventory, but their facilities are only staffed 8 hours per day. During the unstaffed 16 hours per day the belt dryers operated unattended, and the alarm functions on the belt dryers are computerized to automatically dial the telephone number of the operator on call. Both New Prague and Le Seuer reported no problems with unattended operation of their belt dryers in this manner. Buffalo, MN, keeps one operator at the WWTP all hours of the day, because it is a regulatory requirement for a WWTP of its size. Kruger reported that several of its dryers with energy-recovery furnaces in Europe operate unattended overnight, with telephonic alarm service to the operator-on-call.

3.1.2 Recommended Operating Strategies for CBJ

Based on CH2M HILL's survey of other belt dryers operating in the USA, it is recommended that CBJ plan to operate its belt dryer and heat-recovery furnace around-the-clock when it has sufficient solids inventory, similar to the mode of operation at Buffalo, MN. Both the JDWWTP and MWWTP appear to have sufficient pre-dewatering solids storage capacity, although the JDWWTP has more storage volume in its aerobic digestion basin than the MWWTP has in its settled-solids holding tank.

Based on preliminary calculations, CBJ can store at least a week's inventory of waste solids in liquid form at the JDWWTP, which can be used to operate dewatering and drying/combustion facilities around-the-clock. Biosolids storage is not available in these volumes at the MWWTP, so another aerated storage tank may need to be added to provide a week's worth of storage capacity at the MWWTP. It is also recommended that cake storage facilities be constructed at JDWWTP of sufficient volume to store one week's worth of dewatered cake solids from the MWWTP. Cake storage facilities are more costly to build and operate than liquid storage tanks, which is why the estimated capital costs for thermal drying facilities at the JDWWTP are slightly higher than at the MWWTP.

Based on CH2M HILL's survey findings regarding attended or unattended operation of belt dryers, with and without heat-recovery furnaces, it does not appear that full-time attended operation of a drying/heat recovery facility would be necessary for CBJ. Similar to operational procedures at Le Seuer and New Prague, MN, unattended operation of the dewatering and drying systems would be possible, provided that system monitoring can be done remotely via internet or telephone. Control systems for CBJ's thermal drying facilities would need to be designed with special features for remote operation. Similar remote monitoring and control systems are in operation at a number of other belt drying facilities, as noted above.

Automated storage facilities of sufficient capacity for liquid waste solids, dewatered cake solids, dried biosolids, and biosolids ash will need to be designed and provided to allow for unattended operation. Truck load-out facilities for the dewatered cake, dried biosolids, and ash will also need to be provided. The truck-loading facilities will not require remote operating capability, since truck loading activities are undertaken only when staff are onsite. Transport of dewatered biosolids will be required from one of the WWTPs to the other WWTP where the thermal drying facilities are located. It is recommended that truck hauling be done at night to minimize traffic problems and odor complaints, and decrease hauling time.

In summary, the recommended operating strategy for CBJ's new biosolids drying and energy-recovery facilities is very similar to the current operating strategies for similar drying facilities in Buffalo, Le Seuer, and New Prague, MN. For this reason it is considered important that CBJ schedule site visits to view these three existing belt drying facilities in operation.

4.1 Project Phasing and Scheduling Options

This section describes how the project would be implemented and phased under two potential scenarios:

- 1. Design of belt drying system and heat-recovery furnace in a single capital project using a traditional design-bid-build approach.
- 2. Construction of drying and heat-recovery systems in a single capital project using progressive designbuild delivery approach

Based on discussion in Workshop 2, CBJ would prefer to implement Option 1 above, because it provides more time to obtain grant or loan assistance for the construction project. Option 2 would be implemented if there is a need to accelerate the project schedule by up to nine months.

The next section describes the anticipated project schedules under each of the two options listed above.

4.1.1 Anticipated Project Schedules under Two Delivery Options

The CBJ would prefer to implement the biosolids drying/heat-recovery facilities with a traditional design, bid, build delivery approach, with owner pre-purchase or pre-selection of the drying system. Early selection and purchase of the drying and heat-recovery systems would enable detailed design to proceed while the drying equipment is being designed and manufactured, which will lessen the impact of long lead times required for manufacturing and delivery of the drying and heat-recovery equipment.

Table 3 presents an anticipated, general project schedule under the Option 1 scenario above, in which the belt drying system and heat-recovery system would be designed and installed together as part of the same capital project.

It may be possible to accelerate the schedules shown in Table 3 by up to nine months by using an alternative delivery method such as progressive design-build. Under progressive design-build delivery, the project schedule would be compressed in the design and construction phases, since those phases would be delivered by the Design-Build Contractor. An anticipated project schedule under progressive design-build delivery is shown in Table 4.

TABLE 3

Anticipated Project Schedule under Option 1: Construction of Drying and Heat-Recovery Systems in a Single Capital Project

	Year	2014	014 2015			2016				2017→			
Activity	Quarter	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd
Preliminary Engineering													
Project Funding ¹													
Design & Permitting													
Dryer/Furnace Procurement & Submittals													
Dryer/Furnace Manufacturing & Delivery ¹	۶.												
Bidding and Construction ²													
Startup ²													
Full-scale Operations													

¹The dryer/furnace manufacturing/deliver and construction schedule are tied to project funding availability.

² Construction phase ends at substantial completion; final completion would occur after successful startup.

TABLE 4

Anticipated Project Schedule under Option 2: Construction of Drying and Heat-Recovery Systems in a Single Capital Project using Progressive Design-Build Delivery Approach

	Year	2014		20	015		2016 2			201	7→	
Activity	Quarter	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd	3 rd	4 th	1 st	2 nd
Preliminary Engineering												
Project Funding & DB Contract	or Selection ¹											
Design, Permitting, and Construction ²												
Dryer/Furnace Procurement &	Submittals											
Dryer/Furnace Manufacturing	& Delivery ¹											
Startup ²												
Full-scale Operations												

¹The dryer/furnace manufacturing/deliver and construction schedule are tied to project funding availability.

² Construction phase ends at substantial completion; final completion would occur after successful startup.

Startup would begin earlier but take longer in Option 2 than in Option 1. It is expected that discussions and decisions regarding the desired option and delivery method for the project would occur during the preliminary engineering and project funding phases of the project, at which point one of the delivery options described above will be chosen.

4.1.2 Recommended Next Steps

In order to keep the project on schedule, CBJ is expected to endorse the Final Report and recommendations of this Phase II Biosolids Process Evaluation in the early fall of 2014. Site visits to similar biosolids belt-drying and heat-recovery facilities could also be conducted in the fall of 2014.

The scoping and negotiation of preliminary engineering and permitting phases of the project could be accomplished in October 2014, allowing preliminary engineering to get underway in November 2014. Preliminary engineering would also include the initiation of project funding and permitting activities.

If these initial project activities proceed as outlined above, then it is predicted that one of the two potential delivery options discussed above could be implemented according to the schedules shown in Tables 3 or 4.

Appendix B

Thermal Dryer Site Visit Summaries

Summary

From December 2014 to April 2015, members from CBJ Engineering and the Utilities-Wastewater group toured wastewater treatment facilities that implemented direct heat, thermal belt dryers to process solids residuals. These 7 facilities represent all dryer manufacturers of this type installed in the United States (the technology is more widely used in Europe). These visits were vital to crafting the CBJ dryer Request for Proposals. It also enabled the CBJ to exercise a degree of control in the design process and focus the project solely on the drying aspect; it was observed that the other facilities ended up with extra pieces of costly equipment (centrifuges to accompany the dryer, extra cleaning devices, etc.) that might not have been worth the cost.

There are three belt dryer manufacturers that operate in the U.S.: Kruger (a division of Veolia Water Systems), Huber, and Andritz. Kruger and Huber dryer systems were very similar in design and operation. Andritz dryers had significantly more parts, mostly due to the inclusion of a pellet recycle system that mixes a portion of the dried product with the incoming dewatered sludge to increase the total solids content applied to the belt. Andritz dryers were also significantly noisier than the Kruger and Huber models. Other differences between the manufacturers were minor. For example, the equipment used to distribute sludge onto the dryers: Kruger and Huber utilized extruders (though different in design) while Andritz utilized augers. Only one of the facilities, Buffalo, MN, implemented a furnace attachment that directly utilized the pellets to heat the dryer. This closed-loop, pellet burning/sludge drying system is still an emerging technology and after the site visit, CBJ opted not to pursue the furnace option.

All dryers CBJ visited can produce a Class A biosolids product and all facilities sell or give away the product to local farmers or the public. Another similarity between facilities was that at all locations, the dryer performed more efficiently than stated in the design; based on anecdotal remarks and data, dryers used approximately 10% less fuel than originally anticipated.

A brief summary of the dryers are outlined in the table below. Details of the site visits are included in the following pages.

1	Max Design	Dryer	Years in	Operation		6
Location	Flow (MGD)	Manufacturer	Operation	Frequency	Pros	Cons
Buffalo, MN	4.4	Kruger KMW Furnace	6	5 times/year 10-14 days/run	Dryer runs well-no complaints	Many issues with furnace clogging, poor quality parts, and general operations
New Prague, MN	1.83	Kruger	4	5 days/week 24 hours/day every 2 weeks	 Dryer runs well-few complaints 	 Additional SCADA controls needed
Camas, WA	11	Andritz	4	4 days/week 10 hours/day	• Staff is reasonably pleased with unit but with several reservations	 Not same design as seen in Europe Unit built overseas and sent to Camas for assembly-not all parts fit together Unit is very loud Additional walkways and SCADA programming needed after startup "Guinea pig" feeling from staff
Shelton, WA	4	Andritz	2	3 days/week 10 hours/day	 Staff is pleased with unit overall but with reservations 	 Extra parts for pellet recycle make unit cumbersome Unit is very loud Access into unit is limited
Lynwood, WA	6.1	Kruger	2	5 days/week 7 hours/day	 Dryer runs well-few complaints Easy to access for cleaning Easy maintenance 	 Relocated lighting to exterior of unit Condenser requires more cleaning than manufacturer suggested
Sheboygan, WI	58.6	Huber	0 (Start-up phase)	Unknown	 Good service from Huber Trial runs had been effective 	 Required additional screening to remove hair and debris-extruder plate clogged No catwalk on top of dryet
Mooresville, NC	7.5	Huber	2	3 days/week 24 hours/day	 Dryer runs well-few complaints More fuel efficient than specs indicated 	 Huber service has been poor Difficult to get replacement parts Dust accumulation in heat exchanger lead to clogging

Buffalo, MN Population: 14,530 Flow: 4.4 MGD Design Max Dryer: Kruger and KMW Furnace Visited On: 11 December 2014

History: The treatment plant's Kruger dryer and furnace came online in 2009. Prior to this system, biosolids were dried in a reed drying bed and land applied as Class B fertilizer. The dryer elevated the biosolids to Class A. The pellets are subsequently used to power a furnace which provides heat to the dryer. This is a closed loop system.

Process Overview: Sludge is aerobically digested and subsequently fed to two, 2-meter Ashbrook belt filter presses (BFPs). Sludge enters the BFP at approximately 2.5% total solids (TS) and is dewatered to 20-22% TS. Pressed cake is stored for up to 2 days in a 500,000 gallon storage silo until it is pumped to the dryer. The dryer and furnace are run 5 times a year at 10-14 days per run. The resulting dried pellets

are 95-99% TS at operating temperatures between 200-300°F (93-149°C). At the beginning of a run, the system is started with natural gas. Pellets (supplemented with lime and other carbon sources for combustion) are then used in a furnace to heat the dryer. natural However, gas is occasionally needed to maintain the furnace temperature of 1,200°F. Typically, the furnace requires at least 12 hours to reach operating temperature before any combustion of biosolids can occur. Ash from the furnace is typically produced at a rate of 311 lbs/hour.

Figure 1. Kruger dryer in Buffalo, MN

Staffing: The Buffalo Wastewater Treatment Plant has a total of 5 staff including the Superintendent. The plant is unmanned during normal non-working hours with staff on-call through an automated alarm system nights and weekends. One person monitors the plant on weekends for roughly 4 hours per day. Between dryer runs, the system is cleaned. This cleaning process takes 2 employees 2 weeks of work to complete.

Take-Aways and Lessons Learned: The dryer runs well and team is generally very happy with it. Their only recommendation is adding a shredder after the pellets come out of the dyer to maintain a consistent size for the furnace. The only issue with the dryer thus far had to do with the auger that was transporting pellets and not the dryer itself.

Regarding the furnace, they do not recommend KMW as the manufacturer. Many problems and unexpected issues had arisen at the time of the tour. Firstly, the need to augment the pellet fuel with

lime, carbon and occasionally natural gas to maintain operating temperatures. The ash conveyor had also worn out and was being replaced with higher quality metal. There were issues with the pellets back-flowing into the gear box on the furnace because it was bolted flush to the furnace; they ended up adding a spacer and a series of gaskets and flanges at a distance of about 1 foot to resolve the problem. The access hatch used to clean the inside of the furnace was very narrow and short, and required an extremely small person to use it; a retrofit was not easily attainable. The outflow tube for the pellet silo would frequently plug; therefore they recommended a vibrating mechanism to shake any blockages free. Clogging issues in the flue and heat exchangers required the installation of soot blowers. Heat exchangers are difficult to access and clean. Some perpendicular piping presented a problem during operations and was not easily retrofitted. Upon initial installment, the ash bagging station did not come with any sort of dust abatement or containment provision, and treatment plant employees had to build a make-shift cover that was not ideal.

The Superintendent estimates that the cost of pressing, drying and burning the sludge is \$640/ton at 20% total solids, which includes operations, labor, equipment, building depreciation, electricity, natural gas and polymer.

Figure 2. Buffalo, MN final dried product

New Prague, MN Population: 7,800 Flow: 1.83 Design Max Dryer: Kruger Visited on: 11 December 2014

History: The New Prague Wastewater Treatment Facility has been operating for 4 years. The facility treats roughly 600,000 gallons per day with peak flows of 3.2 MGD in the springtime.

Process Overview: Wastewater in New Prague is aerobically treated. Separated sludge is held in a 500,000 gallon aerobic storage tank with very a low dissolved oxygen concentration (0.3 mg/L) to alleviate odors and minimize operating costs. Sludge is pressed and dried as one complete process every two weeks, taking 60-80 hours from start to finish. Sludge is transferred from the storage tank where it averages 1.25% TS to a series of Fournier rotary presses. Each press is run for a total of 2-3 days during manned hours of drying and pressing. Once pressed, the cake is approximately 16% TS. Cake is stored in a silo with minimal agitation for up to 3 days until it is transferred to the dryer. The dryer operates

unmanned (but electronically monitored) 24/7 for a total of roughly 5 days during drying runs. Dry pellets are bagged and ultimately land applied by a local farmer who retrieves the product from the facility.

Natural gas is used to power the dryer and takes roughly 40 ft³ for start-up. Once operational, it takes approximately one hour to dry the sludge (from the time the dewatered cake is extruded until it is dropped off the belt). Approximately 200 tons of dried pellets, 95-99% solids, are produced annually. If the total solids drop below 90%, the product will stick and will not drop off the belt once drying is Figure 3. Kruger dryer in New Prague, MN complete. They have fed the dryer cake as

wet as 11.6% TS with no detriment to system, other than reducing belt speed (and therefore using more fuel) to increase drying time. The dryer is cleaned every 2-3 months and takes 1-1.5 hours to clean. Thus

far operations have only been limited by the condensing tower capacity of the dryer and feed pipe.

Staffing: A total of 4 operations personnel are on staff at the facility.

Take-Aways and Lessons Learned: Ultimately there were no major changes to the dryer the staff would make outside of the SCADA controls. They did however suggest other changes that would aid the overall process. Firstly, they strongly recommended not installing the dryer with

Figure 4. Sludge deposited on dryer belt by extruders

Biosolids End Use Analysis

inadequate headworks. Rags and grit will destroy the dryer components if not properly removed at the beginning of treatment. In addition, the staff advised installing a water vapor softening system for the condensing tower as scale build-up can clog the tower. This problem wasn't foreseen when the dryer was installed, and retrofitting this component proved difficult. They also recommend purchasing and using a CEM solids content analyzer for rapid solids analysis during system operation. Finally, they suggested trench drains at low points throughout the dryer building to facilitate clean-up.

Figure 5. Dried product from New Prague, MN

Camas, WA Population: 19,620 Flow: 11 MGD Design Max Dryer: Andritz Visited On: 25 March 2015

History: Prior to the dryer, Camas produced a Class B biosolids via aerobic digestion. The resulting 25% TS biosolids were dewatered with a centrifuge and land-applied. The dryer was installed 3-4 years ago.

Andritz was the targeted manufacturer because of the particle size and shape.

Process **Overview:** Incoming wastewater is initially screened with Kuster plate screens. Sludge is aerobically digested, dewatered with a centrifuge and stored in an unaerated silo. The dryer runs four 10-hour days per week, with one employee dedicated to its operation. The system takes approximately 1 hour to start up and ½ hour to shut down. Incoming wet sludge is mixed by paddle mixer with a portion of dry recycled sludge before being applied onto the belt with 17-25% TS. The drying process takes 1-

an auger. Sludge entering the dryer is Figure 6. Andritz dryer and recycle feed system in Camas, WA

1 $\frac{1}{2}$ hours at 200-300°F from start to finish to produce a Class A product. The dried pellets are then bagged at the bagging station. A full bag is roughly 1000 lbs. and 2 $\frac{1}{2}$ bags are filled per day when the

dryer is running (approximately 5 tons per week). These bags are sold to local farmers who transport the material off the property at a rate of \$40/ton. There is a bypass option if the dryer goes down, resulting in a Class B product.

Staffing: One employee monitors the dryer while running.

Take-Aways and Lessons Learned: Ultimately this was not the same design that the Camas team saw in Switzerland. Not all pieces of the dryer fit together upon arrival in the United States; the unit was built overseas then sent to Camas and

Figure 7. Dried product in Camas, WA

assembled. In order for the dryer to perform correctly, incoming wet sludge less than 17% TS must be mixed with dried pellets (recycle). This increases energy costs. There were also numerous issues with temperature and hydration monitoring sensors not operating correctly. Post start-up, three additional access hatches were added, as well as a walkway and SCADA programming. The unit is very loud;

earplugs are a necessity, and the team had a difficult time communicating with CBJ staff in the dryer building during the visit. At the time of the visit, the dryer had been running for 4 years and the team was still troubleshooting and fine tuning the unit. The overall feeling was that the Camas dryer was a "Guinea pig" for Andritz in the U.S.

Shelton, WA Population: 9,750 Flow: 4 MGD Design Max, 2.2 MGD Average Dryer: Andritz Visited On: 26 March 2015

History: The dryer was part of a \$40 million, 15 year facility upgrade. The dryer installation was completed and began running in 2012.

Process Overview: Incoming wastewater is screened for solids with a mechanical plate screen and treated with an MBR system. Solids are aerobically digested to Class B and 1.4-1.8% TS. Once digested, the solids are initially dewatered using an Andritz centrifuge to 20-22% TS. Just prior to distribution onto the dryer belt, a small amount of dried pellets is recycled and mixed with the dewatered cake to increase the total solids content. The Andritz dryer operates on natural gas at a target temperature of 200-300°F. Sludge storage capacity at the facility is small; the centrifuge and dryer run at the same time and are paced to process material at the same rate. Dried pellets are bagged in 1200 lb. super sacks at roughly 3 bags per week. The dryer produces roughly 200 dry tons per year of Class A product at Figure 8. Andritz dryer and recycle feed system in Shelton, WA an average of 97% TS. The product is given away to farmers and other small consumers.

The dryer is run 3 days a week for 10 hours per day and is always manned. There is no odor control at the facility.

Staffing: 1 employee works solely on the dryer while it's running.

Take-Aways and Lessons Learned: Overall the team is happy with the dryer but there have been a lot of issues. The recycle feed design includes an additional HVAC conduits, instrumentation and operational fittings. This requires more spare parts and makes the unit more complicated. The unit is very loud; earplugs are a necessity, and the team had a difficult time communicating with CBJ staff in the dryer building during the visit.

Figure 9. Dried product hopper in Shelton, WA

Biosolids End Use Analysis

Lynnwood, WA Alderwood Water and Wastewater District Population: 26,000 Flow: 6.1 MGD Design Max, 2 MGD Average Dryer: Kruger Visited On: 21 April 2015

History: Beginning in 2008, the facility underwent a \$120M upgrade. Existing sequencing batch reactor (SBR) treatment equipment was upgraded to membrane bioreactor technology (MBR). In addition, the existing composting facility to process biosolids was replaced with the Kruger dryer. Both Andritz and Kruger bid on the dryer project. The installation of the dryer brought the final biosolids product from a Class B status to Class A.

Process Overview: Wastewater is initially screened with 3mm JWC mesh screens followed by aeration tanks and 4 MBRs to treat the wastewater. Undigested sludge is dewatered using a centrifuge and then stored in one of two 70,000 gallon storage tanks. The 18-20% TS dewatered cake is stored in a silo. The dryer is run 7 hours/day, 5 days/week, and requires an additional 1 hour of warm up time (to 350°F) and 2 hours to cool down. Percent solids are measured in the silo every day before start-up. Generally it takes 6-8 hours to totally drain the silo. The dried biosolids

Figure 10. Kruger dryer system at the Alderwood Wastewater Facility

product is between 93-95% TS. The facility produces 9 dry tons per week. Dried product is dumped onto Alderwood's own 50-foot trailer and is transported to Boulder Park Inc. (part of the University of Washington) for wheat production. Heat exchangers were installed to provide some heat recovery. Odor mitigation is performed by 3 large carbon scrubbers which treat odors for the entire facility.

Staffing: 1 person is on staff to monitor the dryer once per hour.

Take-Aways and Lessons Learned: The staff at the Alderwood plant is generally pleased with the dryer. It runs well and they have little issues with dust or odors. A highlight was that the extruder nozzles are able to be isolated so if one gets clogged or needs work done, there is no need to shut-down the dryer. The staff is totally comfortable letting the dryer run overnight if need be, monitoring via SCADA. There are only a few items they would change about the unit. They've found exterior-mounted lighting is better for viewing the belts and that the interior lights tended to have condensation build-up. In addition the condenser required more frequent cleaning for particulates than the manufacturer suggested. Additionally, since start-up they've noticed sludge on Mondays requires more drying time as the mixture dewaters in the silo between runs as opposed to staying uniform. This was remedied by decreasing the amount of sludge stored in the silo over the weekend.

There is no redundancy with the unit, but a stock of replacement parts is kept on-hand. Cleaning consists of totally shutting down the unit and removing dust from the belts and hatches.

Sheboygan, WI Population: 68,000 Flow: 58.6 MGD Design Max, 10 MGD Average Dryer: Huber Visited On: 28 April 2015

History: From 2008-2012, the plant underwent several major equipment upgrades to the treatment process including new screening, cyclonic grit removal, and biosolids handling. Prior to dryer installation, biosolids were anaerobically digested and dewatered with gravity belt thickeners. The biosolids were then sold to local farmers and land-applied. Huber won the dryer contract via low bid. With the

installation of the dryer in 2014 and resulting biogas production from codigestion, the plant is nearly 100% energy efficient.

Process Overview: At the time of the visit, the dryer was not fully up and running; a Huber technician was on site to finish fine tuning and testing the system. Incoming wastewater is initially screened using Wiessman 5mm plate screens and cyclonic grit removal. Wastewater then flows to aeration basins. Sludge is initially dewatered using a gravity belt thickener prior to being sent to the digester. The 6% TS sludge is then digested in an anaerobic digester. Prior to drying, the digested biosolids are dewatered again with a screw press (18-22% TS). The

Figure 11. Huber dryer system in Sheboygan, WI

dryer is heated to 180°F and above and takes roughly 15 minutes to reach operating temperature. The dried pellets are stored in a silo with 10.5 days' worth of storage capacity. The treatment plant also has 6 months of liquid storage space, should the dryer and dewatering units fail. The system has the capacity to dry 4500 lbs. of sludge per hour on the belt. There is no odor control at the facility.

The dryer consists of 9 modules, each containing heat exchangers on the top and bottom of the unit. The plant's effluent is used as cooling water before being discharged. Thermometers were placed along the belt to directly measure biosolid temperature and ensure Class A permit requirements were met (EPA regulation states biosolids must reach 176°F to meet Class A standards). Since Sheboygan digests

their biosolids, the BTU value of the dried pellets isn't high enough for burning. However, digester biogas is used to heat the dryer.

Staffing: Unknown-the dryer was not fully operational at the time of visit.

Take-Aways and Lessons Learned: As this unit was not fully online at the time of the visit, there were a few issues the Sheboygan team agreed needed to be addressed. They were pleased thus far with Huber's service. The extruder plates need to be cleaned every day prior to starting a dryer run. In addition, Huber has a pre-drying sludge

Figure 12. Dried product in Sheboygan, WI

screen that the team elected to install to help remove hair and any remaining rags. This change cost \$200,000. The top of the dryer has no catwalk and is therefore only accessible by a manlift. Ultimately this was not the same model as those seen in Europe, but thus far that hasn't been an issue. A valuable takeaway for the CBJ team was that the Sheboygan team wrote into the contract that final payment will be withheld until the dryer is fully operational and all fine tuning is resolved. This allowed the Sheboygan team to have a Huber representative on site well after the initial start-up of the unit to work through some of the startup difficulties.

Biosolids End Use Analysis

Mooresville, NC Population: 34,887 Flow: 7.5 MGD Design Max, 4 MGD Average Dryer: Huber BT Belt Dryer Visited On: 30 April 2015

History: Prior to the dryer installation, Mooresville buried their dewatered sludge (via BPF), aerobically digested biosolids in a landfill. In 2010, the City began investigating upgrades to cover the rapidly increasing population in Mooresville and for an alternative to landfill disposal costs. Of the \$10 million in facility upgrades, \$2.5 million was needed for the dryer with an additional \$750,000 for a new building. At the time of the visit, the dryer had been online for 2 years (start-up date was June 2012). Huber was the lowest bid and their U.S. headquarters (by happenstance) is less than 100 miles from the facility.

Process Overview: Mooresville's wastewater is mechanically screened and treated in aeration basins

and then clarified for solids separation. Sludge is aerobically digested and then dewatered with a belt filter press where it reaches 17-18% TS. Once dried, the product is Class A and 95-98% TS. Most wastewater is residential with a small amount of industrial input from a brewery and a candy shop.

The BFP fills the 15-ton capacity hopper in 12-15 hours. Pressed cake is sent to a hopper until it is dried. Cake less than 13% TS will cause issues for the extruders and not dry well. It takes the dryer 24 hours to process the full hopper at 200°F (roughly 4 hours for sludge to dry start to finish). The dryer is comprised of 5 modules and 5 corresponding heat exchangers with 200 sensors. The dryer is checked hourly and cameras were in place to monitor the product quality and spot any clogging issues. Once dried, the product is stored in a second hopper. The operators stressed the importance of keeping the product dry and protected from weather once it came out of the dryer. Dried product is sold locally and whoever purchases the

product retains the disposal contract. There is no odor Figure 13. Huber dryer system in Mooresville, NC control for the facility.

Staffing: There are three operators who work solely with the BFP and dryer; two operators work during the day and one works the night shift.

Take-Aways and Lessons Learned: The dryer has run well overall; the system has been more efficient and uses less energy than the specifications. The primary issues have been with Huber service and spare parts availability.

Since the dryer went online, Huber service had been less than desirable: U.S. service technicians were either difficult to contact, totally unavailable, or not as experienced as the German representatives. Parts were slow to be delivered. The original PMs from Huber were very helpful when onsite; however (even during the one year warranty period) they were nearly impossible to contact.

Dust accumulated in the heat exchanger, causing clogging. Due to the service issues described above, the operators ended up troubleshooting and installing a vacuum to remedy the problem.

Other issues include dry product getting stuck in pipe after it falls out of the dryer. The extruder must be cleaned twice a day to prevent clogging. Portions of the heat exchangers needed insulation to protect them from cold weather. In addition, the proposal did not specify data needed to be exported from SCADA in a useable form; therefore any data from the dryer cannot currently be easily accessed for analytical purposes.

Figure 14. Dried product in Mooresville, NC

Appendix C

Laboratory Test Results: Sludge, Influent and Effluent

and BACTERIOLOGISTS Approved by State of California

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

95076 USA Account #: 4050498-1/2-8359 Group: May.14 C #33 Reporting Date: May 29, 2014

CBJ- Wastewater 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:	15 May. 14
Sample Identification:	MWWTP
Sample ID #:	4050498 - 1/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.3	8.1	4.02-D
Ammonia (NH ₄ -N):	mg/kg	650	3900	4.02-C
Nitrate (NO ₃ -N):	mg/kg	< 0.2	< 1.0	4.02-B
Organic Nitrogen (OrgN):	%	1.2	7.7	Calc.
Phosphorus (as P_2O_5):	%	0.59	3.6	Calc.
Phosphorus (P):	mg/kg	2600	16000	4.03-A
Potassium (as K ₂ O):	%	0.10	0.61	Calc.
Potassium (K):	mg/kg	840	5100	4.04-A
Calcium (Ca):	%	0.10	0.63	4.05
Magnesium (Mg):	%	0.050	0.31	4.05
Sulfate (SO ₄):	mg/kg	72	440	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	46	280	4.05-Cu
Zinc (Zn):	mg/kg	47	290	4.05-Zn
Iron (Fe):	mg/kg	910	5500	4.05-Fe
Manganese (Mn):	mg/kg	12	70	4.05-Mn
Boron (B):	mg/kg	0.80	4.9	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.0066	0.040	4.05-Na
Chloride (Cl):	%	0.0046	0.028	04.05/IC
pH Value:	units	5.94	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	10	04.10-A
Bulk Density :	lb/cu ft	62	10	SCL
Carbonates (as CaCO ₃) :	lb/ton	<0.1	<0.1	04.08-A
Organic Matter:	%	14.8	90.0	05.07-A
Organic Carbon:	%	7.4	45	4.01
Ash:	%	1.6	10.0	3.02
C/N Ratio	ratio	5.56	5.56	calc.
Moisture:	%	83.6	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 4050498-1/2-8359 Group: May.14 C #33 Reporting Date: May 29, 2014

CBJ- Wastewater 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:	15 May. 14
Sample Identification:	MWWTP
Sample ID #:	4050498 - 1/2

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		4.5	mg/kg dw	1.0	100.7	23 May. 14
Cadmium (Cd):	Less than	1.0	mg/kg dw	1.0	97.7	23 May. 14
Chromium (Cr):		6.3	mg/kg dw	1.0	98.2	23 May. 14
Copper (Cu):		280	mg/kg dw	1.0	88.6	23 May. 14
Lead (Pb):		7.6	mg/kg dw	1.0	101.9	23 May. 14
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	98.5	23 May. 14
Molybdenum (Mo):		2.2	mg/kg dw	1.0	96.8	23 May. 14
Nickel (Ni):		3.7	mg/kg dw	1.0	93.1	23 May. 14
Selenium (Se):		2.9	mg/kg dw	1.0	100.0	23 May. 14
Zinc (Zn):		290	mg/kg dw	1.0	93.1	23 May. 14
Cobalt (Co)		1.3	mg/kg dw	0.50	91.8	23 May. 14
Total Solids (TMECC 0	3.09)	16	%	0.05	NA	16 May. 14

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0149 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 83.6 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

and BACTERIOLOGISTS Approved by State of California

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

95076 USA Account #: 4050498-2/2-8359 Group: May.14 C #34 Reporting Date: May 29, 2014

CBJ- Wastewater 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:	15 May. 14
Sample Identification:	JDTP
Sample ID #:	4050498 - 2/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.1	7.8	4.02-D
Ammonia (NH ₄ -N):	mg/kg	140	980	4.02-C
Nitrate (NO ₃ -N):	mg/kg	1.3	9.0	4.02-B
Organic Nitrogen (OrgN):	%	1.1	7.7	Calc.
Phosphorus (as P_2O_5):	%	0.61	4.3	Calc.
Phosphorus (P):	mg/kg	2700	19000	4.03-A
Potassium (as K ₂ O):	%	0.12	0.89	Calc.
Potassium (K):	mg/kg	1000	7400	4.04-A
Calcium (Ca):	%	0.16	1.2	4.05
Magnesium (Mg):	%	0.073	0.52	4.05
Sulfate (SO ₄):	mg/kg	5.9	42	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	73	520	4.05-Cu
Zinc (Zn):	mg/kg	81	580	4.05-Zn
Iron (Fe):	mg/kg	1400	9800	4.05-Fe
Manganese (Mn):	mg/kg	15	110	4.05-Mn
Boron (B):	mg/kg	2.7	19	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.032	0.22	4.05-Na
Chloride (Cl):	%	0.025	0.18	04.05/IC
pH Value:	units	6.56	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	5.2	04.10-A
Bulk Density :	lb/cu ft	63	8.8	SCL
Carbonates (as CaCO ₃) :	lb/ton	<0.1	<0.1	04.08-A
Organic Matter:	%	11.6	82.4	05.07-A
Organic Carbon:	%	6.0	43	4.01
Ash:	%	2.5	17.6	3.02
C/N Ratio	ratio	5.51	5.51	calc.
Moisture:	%	86.0	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 4050498-2/2-8359 Group: May.14 C #34 Reporting Date: May 29, 2014

CBJ- Wastewater 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:	15 May. 14
Sample Identification:	JDTP
Sample ID #:	4050498 - 2/2

Metals

Metals	Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):	6.9	mg/kg dw	1.0	100.7	23 May. 14
Cadmium (Cd):	1.7	mg/kg dw	1.0	97.7	23 May. 14
Chromium (Cr):	14	mg/kg dw	1.0	98.2	23 May. 14
Copper (Cu):	520	mg/kg dw	1.0	88.6	23 May. 14
Lead (Pb):	20	mg/kg dw	1.0	101.9	23 May. 14
Mercury (Hg):	1.1	mg/kg dw	1.0	98.5	23 May. 14
Molybdenum (Mo):	6.6	mg/kg dw	1.0	96.8	23 May. 14
Nickel (Ni):	11	mg/kg dw	1.0	93.1	23 May. 14
Selenium (Se):	4.9	mg/kg dw	1.0	100.0	23 May. 14
Zinc (Zn):	580	mg/kg dw	1.0	93.1	23 May. 14
Cobalt (Co)	2.6	mg/kg dw	0.50	91.8	23 May. 14
Total Solids (TMECC 03.09)	14	%	0.05	NA	16 May. 14

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0127 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 86.0 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

and BACTERIOLOGISTS Approved by State of California

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE

95076 USA Account #: 6040499-1/2-9270 Group: Apr16C #40 Reporting Date: April 27, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:15 Apr. 16Sample Identification:(MTP) Mendenhall Treatment PlantSample ID #:6040499 - 1/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.1	8.1	4.02-D
Ammonia (NH ₄ -N):	mg/kg	180	1300	4.02-C
Nitrate (NO ₃ -N):	mg/kg	< 0.1	< 1.0	4.02-B
Organic Nitrogen (OrgN):	%	1.1	8.0	Calc.
Phosphorus (as P_2O_5):	%	0.55	3.9	Calc.
Phosphorus (P):	mg/kg	2400	17000	4.03-A
Potassium (as K ₂ O):	%	0.10	0.71	Calc.
Potassium (K):	mg/kg	830	5900	4.04-A
Calcium (Ca):	%	0.10	0.72	4.05
Magnesium (Mg):	%	0.048	0.34	4.05
Sulfate (SO ₄):	mg/kg	12	83	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	38	270	4.05-Cu
Zinc (Zn):	mg/kg	59	420	4.05-Zn
Iron (Fe):	mg/kg	950	6800	4.05-Fe
Manganese (Mn):	mg/kg	14	99	4.05-Mn
Boron (B):	mg/kg	0.92	6.6	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.0069	0.049	4.05-Na
Chloride (Cl):	%	0.0025	0.018	04.05/IC
pH Value:	units	5.96	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	3.5	04.10-A
Bulk Density :	lb/cu ft	55	7.7	SCL
Carbonates (as CaCO ₃) :	lb/ton	0.21	1.5	04.08-A
Organic Matter:	%	12.2	87.3	05.07-A
Organic Carbon:	%	6.3	45	4.01
Ash:	%	1.8	12.7	3.02
C/N Ratio	ratio	5.56	5.56	calc.
Moisture:	%	86.0	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

ANALYTICAL CHEMISTS and BACTERIOLOGISTS Approved by State of California

SOIL CONTROL LAB

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6040499-1/2-9270 Group: Apr16C #40 Reporting Date: April 27, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:15 Apr. 16Sample Identification:(MTP) Mendenhall Treatment PlantSample ID #:6040499 - 1/2

WATSONVILLE

CALIFORNIA 95076

USA

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		2.8	mg/kg dw	1.0	98.8	23 Apr. 16
Cadmium (Cd):	Less than	1.0	mg/kg dw	1.0	90.9	23 Apr. 16
Chromium (Cr):		7.7	mg/kg dw	1.0	94.7	23 Apr. 16
Copper (Cu):		270	mg/kg dw	1.0	99.5	23 Apr. 16
Lead (Pb):		6.1	mg/kg dw	1.0	86.8	23 Apr. 16
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	87.8	23 Apr. 16
Molybdenum (Mo):		3.0	mg/kg dw	1.0	90.9	23 Apr. 16
Nickel (Ni):		5.4	mg/kg dw	1.0	101.4	23 Apr. 16
Selenium (Se):		3.2	mg/kg dw	1.0	86.5	23 Apr. 16
Zinc (Zn):		420	mg/kg dw	1.0	101.2	23 Apr. 16
Cobalt (Co)		1.7	mg/kg dw	0.50	96.4	23 Apr. 16
Total Solids (TMECC 0	3.09)	14	%	0.05	NA	15 Apr. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.014 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 86.0 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

Account #: 6040499-2/2-9270 Group: Apr16C #41 Reporting Date: April 27, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:15 Apr. 16Sample Identification:(JDTP) Juneau Douglas Treatment PlantSample ID #:6040499 - 2/2

WATSONVILLE

95076 USA

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	0.93	7.0	4.02-D
Ammonia (NH ₄ -N):	mg/kg	110	800	4.02-C
Nitrate (NO ₃ -N):	mg/kg	0.18	1.4	4.02-B
Organic Nitrogen (OrgN):	%	0.92	6.9	Calc.
Phosphorus (as P_2O_5):	%	0.59	4.3	Calc.
Phosphorus (P):	mg/kg	2600	19000	4.03-A
Potassium (as K ₂ O):	%	0.13	0.96	Calc.
Potassium (K):	mg/kg	1100	8000	4.04-A
Calcium (Ca):	%	0.13	0.96	4.05
Magnesium (Mg):	%	0.076	0.58	4.05
Sulfate (SO ₄):	mg/kg	1.4	10	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	65	490	4.05-Cu
Zinc (Zn):	mg/kg	72	540	4.05-Zn
Iron (Fe):	mg/kg	1000	7700	4.05-Fe
Manganese (Mn):	mg/kg	15	110	4.05-Mn
Boron (B):	mg/kg	2.4	18	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.035	0.26	4.05-Na
Chloride (Cl):	%	0.0087	0.066	04.05/IC
pH Value:	units	6.45	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	2.7	04.10-A
Bulk Density :	lb/cu ft	61	8.1	SCL
Carbonates (as $CaCO_3$) :	lb/ton	1.5	11	04.08-A
Organic Matter:	%	10.9	81.7	05.07-A
Organic Carbon:	%	5.7	43	4.01
Ash:	%	2.4	18.3	3.02
C/N Ratio	ratio	6.14	6.14	calc.
Moisture:	%	86.7	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE CALIFORNIA

95076

USA

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6040499-2/2-9270 Group: Apr16C #41 Reporting Date: April 27, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:15 Apr. 16Sample Identification:(JDTP) Juneau Douglas Treatment PlantSample ID #:6040499 - 2/2

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		4.9	mg/kg dw	1.0	98.8	23 Apr. 16
Cadmium (Cd):		1.1	mg/kg dw	1.0	90.9	23 Apr. 16
Chromium (Cr):		13	mg/kg dw	1.0	94.7	23 Apr. 16
Copper (Cu):		490	mg/kg dw	1.0	99.5	23 Apr. 16
Lead (Pb):		19	mg/kg dw	1.0	86.8	23 Apr. 16
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	87.8	23 Apr. 16
Molybdenum (Mo):		5.3	mg/kg dw	1.0	90.9	23 Apr. 16
Nickel (Ni):		13	mg/kg dw	1.0	101.4	23 Apr. 16
Selenium (Se):		4.5	mg/kg dw	1.0	86.5	23 Apr. 16
Zinc (Zn):		540	mg/kg dw	1.0	101.2	23 Apr. 16
Cobalt (Co)		3.0	mg/kg dw	0.50	96.4	23 Apr. 16
Total Solids (TMECC 03	.09)	13	%	0.05	NA	15 Apr. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0133 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 86.7 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE CALIFORNIA 95076 USA

Account #: 6080239-2/2-9270 Group: Aug16A #38 Reporting Date: August 11, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:05 Aug. 16Sample Identification:Mendenhall Treatment Plant, Sample #1, Belt Filter Press CakeSample ID #:6080239 - 2/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.3	8.3	4.02-D
Ammonia (NH ₄ -N):	mg/kg	370	2400	4.02-C
Nitrate (NO ₃ -N):	mg/kg	< 0.2	< 1.0	4.02-B
Organic Nitrogen (OrgN):	%	1.3	8.1	Calc.
Phosphorus (as P_2O_5):	%	0.57	3.6	Calc.
Phosphorus (P):	mg/kg	2500	16000	4.03-A
Potassium (as K ₂ O):	%	0.10	0.67	Calc.
Potassium (K):	mg/kg	840	5600	4.04-A
Calcium (Ca):	%	0.11	0.74	4.05
Magnesium (Mg):	%	0.040	0.26	4.05
Sulfate (SO ₄):	mg/kg	5.5	36	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	32	210	4.05-Cu
Zinc (Zn):	mg/kg	55	360	4.05-Zn
Iron (Fe):	mg/kg	1100	7300	4.05-Fe
Manganese (Mn):	mg/kg	15	100	4.05-Mn
Boron (B):	mg/kg	1.3	8.7	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.0078	0.051	4.05-Na
Chloride (Cl):	%	0.010	0.066	04.05/IC
pH Value:	units	7.08	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	7.2	04.10-A
Bulk Density :	lb/cu ft	67	10	SCL
Carbonates (as CaCO ₃) :	lb/ton	0.24	1.6	04.08-A
Organic Matter:	%	13.5	89.0	05.07-A
Organic Carbon:	%	7.1	47	4.01
Ash:	%	1.7	11.0	3.02
C/N Ratio	ratio	5.66	5.66	calc.
Moisture:	%	84.9	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

and BACTERIOLOGISTS Approved by State of California SOIL CONTROL LAB 42 HANGAR WAY WATSONVILLE CALIFORNIA 95076

USA

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6080239-2/2-9270 Group: Aug16A #38 Reporting Date: August 11, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

ANALYTICAL CHEMISTS

Date Received:05 Aug. 16Sample Identification:Mendenhall Treatment Plant, Sample #1, Belt Filter Press CakeSample ID #:6080239 - 2/2

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		1.9	mg/kg dw	1.0	97.2	09 Aug. 16
Cadmium (Cd):	Less than	1.0	mg/kg dw	1.0	90.0	09 Aug. 16
Chromium (Cr):		5.9	mg/kg dw	1.0	93.6	09 Aug. 16
Copper (Cu):		210	mg/kg dw	1.0	96.2	09 Aug. 16
Lead (Pb):		5.0	mg/kg dw	1.0	90.5	09 Aug. 16
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	85.6	09 Aug. 16
Molybdenum (Mo):		3.3	mg/kg dw	1.0	92.7	09 Aug. 16
Nickel (Ni):		4.2	mg/kg dw	1.0	98.3	09 Aug. 16
Selenium (Se):		2.8	mg/kg dw	1.0	88.0	09 Aug. 16
Zinc (Zn):		360	mg/kg dw	1.0	96.2	09 Aug. 16
Cobalt (Co)		1.3	mg/kg dw	0.50	92.8	09 Aug. 16
Total Solids (TMECC (03.09)	15	%	0.05	NA	05 Aug. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0151 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 84.9 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE CALIFORNIA 95076 USA

Account #: 6080239-1/2-9270 Group: Aug16A #37 Reporting Date: August 11, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:05 Aug. 16Sample Identification:Juneau Douglas Treatment Plant, Cake #1, Belt Filter PressSample ID #:6080239 - 1/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	0.94	7.5	4.02-D
Ammonia (NH ₄ -N):	mg/kg	4.9	39	4.02-C
Nitrate (NO ₃ -N):	mg/kg	< 0.1	< 1.0	4.02-B
Organic Nitrogen (OrgN):	%	0.94	7.5	Calc.
Phosphorus (as P_2O_5):	%	0.64	5.0	Calc.
Phosphorus (P):	mg/kg	2800	22000	4.03-A
Potassium (as K ₂ O):	%	0.13	1.0	Calc.
Potassium (K):	mg/kg	1100	8400	4.04-A
Calcium (Ca):	%	0.15	1.2	4.05
Magnesium (Mg):	%	0.074	0.59	4.05
Sulfate (SO ₄):	mg/kg	28	230	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	66	520	4.05-Cu
Zinc (Zn):	mg/kg	85	680	4.05-Zn
Iron (Fe):	mg/kg	1100	8500	4.05-Fe
Manganese (Mn):	mg/kg	21	170	4.05-Mn
Boron (B):	mg/kg	2.8	22	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.022	0.18	4.05-Na
Chloride (CI):	%	0.011	0.086	04.05/IC
pH Value:	units	6.33	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	3.1	04.10-A
Bulk Density :	lb/cu ft	66	8.3	SCL
Carbonates (as CaCO ₃) :	lb/ton	0.49	3.9	04.08-A
Organic Matter:	%	10.2	81.5	05.07-A
Organic Carbon:	%	5.3	43	4.01
Ash:	%	2.3	18.5	3.02
C/N Ratio	ratio	5.73	5.73	calc.
Moisture:	%	87.5	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

and BACTERIOLOGISTS Approved by State of California SOIL CONTROL LAB 42 HANGAR WAY WATSONVILLE CALIFORNIA 95076

USA

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6080239-1/2-9270 Group: Aug16A #37 Reporting Date: August 11, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

ANALYTICAL CHEMISTS

Date Received:05 Aug. 16Sample Identification:Juneau Douglas Treatment Plant, Cake #1, Belt Filter PressSample ID #:6080239 - 1/2

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		5.3	mg/kg dw	1.0	97.2	09 Aug. 16
Cadmium (Cd):		1.4	mg/kg dw	1.0	90.0	09 Aug. 16
Chromium (Cr):		15	mg/kg dw	1.0	93.6	09 Aug. 16
Copper (Cu):		520	mg/kg dw	1.0	96.2	09 Aug. 16
Lead (Pb):		17	mg/kg dw	1.0	90.5	09 Aug. 16
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	85.6	09 Aug. 16
Molybdenum (Mo):		6.2	mg/kg dw	1.0	92.7	09 Aug. 16
Nickel (Ni):		19	mg/kg dw	1.0	98.3	09 Aug. 16
Selenium (Se):		5.2	mg/kg dw	1.0	88.0	09 Aug. 16
Zinc (Zn):		680	mg/kg dw	1.0	96.2	09 Aug. 16
Cobalt (Co)		2.4	mg/kg dw	0.50	92.8	09 Aug. 16
Total Solids (TMECC 03	.09)	12	%	0.05	NA	05 Aug. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0125 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 87.5 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE

95076 USA Account #: 6110320-1/2-9270 Group: Nov16B #47 Reporting Date: November 18, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:10 Nov. 16Sample Identification:MTP- Mendenhall Treatment PlantSample ID #:6110320 - 1/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.0	8.1	4.02-D
Ammonia (NH ₄ -N):	mg/kg	400	3200	4.02-C
Nitrate (NO ₃ -N):	mg/kg	0.18	1.4	4.02-B
Organic Nitrogen (OrgN):	%	0.96	7.8	Calc.
Phosphorus (as P_2O_5):	%	0.50	3.9	Calc.
Phosphorus (P):	mg/kg	2200	17000	4.03-A
Potassium (as K ₂ O):	%	0.096	0.77	Calc.
Potassium (K):	mg/kg	800	6400	4.04-A
Calcium (Ca):	%	0.11	0.85	4.05
Magnesium (Mg):	%	0.039	0.31	4.05
Sulfate (SO ₄):	mg/kg	3.9	31	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	31	240	4.05-Cu
Zinc (Zn):	mg/kg	41	330	4.05-Zn
Iron (Fe):	mg/kg	870	6900	4.05-Fe
Manganese (Mn):	mg/kg	15	120	4.05-Mn
Boron (B):	mg/kg	0.59	4.7	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.0058	0.046	4.05-Na
Chloride (Cl):	%	0.017	0.14	04.05/IC
pH Value:	units	6.84	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	8.7	04.10-A
Bulk Density :	lb/cu ft	61	7.6	SCL
Carbonates (as CaCO ₃) :	lb/ton	0.86	6.8	04.08-A
Organic Matter:	%	10.6	84.9	05.07-A
Organic Carbon:	%	5.4	43	4.01
Ash:	%	1.9	15.1	3.02
C/N Ratio	ratio	5.31	5.31	calc.
Moisture:	%	87.5	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

ANALYTICAL CHEMISTS and BACTERIOLOGISTS Approved by State of California

SOIL CONTROL LAB

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6110320-1/2-9270 Group: Nov16B #47 Reporting Date: November 18, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:10 Nov. 16Sample Identification:MTP- Mendenhall Treatment PlantSample ID #:6110320 - 1/2

WATSONVILLE

CALIFORNIA 95076

USA

Metals

Metals		Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):		2.2	mg/kg dw	1.0	99.1	16 Nov. 16
Cadmium (Cd):	Less than	1.0	mg/kg dw	1.0	83.4	16 Nov. 16
Chromium (Cr):		7.4	mg/kg dw	1.0	89.4	16 Nov. 16
Copper (Cu):		240	mg/kg dw	1.0	93.1	16 Nov. 16
Lead (Pb):		6.0	mg/kg dw	1.0	88.5	16 Nov. 16
Mercury (Hg):	Less than	1.0	mg/kg dw	1.0	98.3	16 Nov. 16
Molybdenum (Mo):		2.9	mg/kg dw	1.0	87.5	16 Nov. 16
Nickel (Ni):		5.3	mg/kg dw	1.0	97.5	16 Nov. 16
Selenium (Se):		2.9	mg/kg dw	1.0	87.2	16 Nov. 16
Zinc (Zn):		330	mg/kg dw	1.0	94.1	16 Nov. 16
Cobalt (Co)		1.7	mg/kg dw	0.50	92.1	16 Nov. 16
Total Solids (TMECC 0	3.09)	12	%	0.05	NA	11 Nov. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.0125 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 87.5 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

ANALYTICAL CHEMISTS

SOIL CONTROL LAB

WATSONVILLE

95076 USA Account #: 6110320-2/2-9270 Group: Nov16B #48 Reporting Date: November 18, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:10 Nov. 16Sample Identification:JDTP- Juneau Douglas Treatment PlantSample ID #:6110320 - 2/2

		Wet wt.	Dry wt.	TMECC
Nutrients-Primary + Secondary	Units	Basis	Basis	Method
Total Nitrogen:	%	1.2	7.2	4.02-D
Ammonia (NH ₄ -N):	mg/kg	310	1900	4.02-C
Nitrate (NO ₃ -N):	mg/kg	0.89	5.5	4.02-B
Organic Nitrogen (OrgN):	%	1.2	7.0	Calc.
Phosphorus (as P_2O_5):	%	0.48	3.0	Calc.
Phosphorus (P):	mg/kg	2100	13000	4.03-A
Potassium (as K ₂ O):	%	0.082	0.52	Calc.
Potassium (K):	mg/kg	680	4300	4.04-A
Calcium (Ca):	%	0.084	0.52	4.05
Magnesium (Mg):	%	0.051	0.32	4.05
Sulfate (SO ₄):	mg/kg	85	530	4.12-D/IC
Nutrients - Trace elements				
Copper (Cu):	mg/kg	70	440	4.05-Cu
Zinc (Zn):	mg/kg	71	450	4.05-Zn
Iron (Fe):	mg/kg	1300	8100	4.05-Fe
Manganese (Mn):	mg/kg	15	97	4.05 - Mn
Boron (B):	mg/kg	1.3	8.2	4.05-B
Salts, pH, Bulk Density, Carbonates				
Sodium (Na):	%	0.025	0.15	4.05-Na
Chloride (Cl):	%	0.025	0.16	04.05/IC
pH Value:	units	5.60	NA	04.11-A
Electrical Conductivity (EC5 dw):	mmhos/cm	NA	5.8	04.10-A
Bulk Density :	lb/cu ft	63	10	SCL
Carbonates (as $CaCO_3$) :	lb/ton	0.31	2.0	04.08-A
Organic Matter:	%	13.4	84.1	05.07-A
Organic Carbon:	%	6.8	42	4.01
Ash:	%	2.5	15.9	3.02
C/N Ratio	ratio	5.83	5.83	calc.
Moisture:	%	84.0	0	3.09
AgIndex	ratio	> 10	> 10	SCL

To Calculate lbs/ton: (%Nutrient) x (20)

To Calculate lbs/ton: (mg/kg Nutrient/10,000) x (20)

To Calculate lbs/cu yd: (%Nutrient/100) x B.D. x 27

To Calculate lbs/cu yd: (mg/kgNutrient/1,000,000) x B.D. x 27

ANALYTICAL CHEMISTS and BACTERIOLOGISTS Approved by State of California

SOIL CONTROL LAB

WATSONVILLE

CALIFORNIA 95076

USA

TEL: 831-724-5422 FAX: 831-724-3188 www.compostlab.com

Account #: 6110320-2/2-9270 Group: Nov16B #48 Reporting Date: November 18, 2016

Mendenhall Treatment Plant 2009 Radcliffe Road Juneau, AK 99801 Attn: Samantha Stoughtenger

Date Received:10 Nov. 16Sample Identification:JDTP- Juneau Douglas Treatment PlantSample ID #:6110320 - 2/2

Metals

Metals	Results	Units	MDL	% Recovery	Date Tested
Arsenic (As):	3.9	mg/kg dw	1.0	99.1	16 Nov. 16
Cadmium (Cd):	1.2	mg/kg dw	1.0	83.4	16 Nov. 16
Chromium (Cr):	15	mg/kg dw	1.0	89.4	16 Nov. 16
Copper (Cu):	440	mg/kg dw	1.0	93.1	16 Nov. 16
Lead (Pb):	19	mg/kg dw	1.0	88.5	16 Nov. 16
Mercury (Hg): Less	s than 1.0	mg/kg dw	1.0	98.3	16 Nov. 16
Molybdenum (Mo):	6.0	mg/kg dw	1.0	87.5	16 Nov. 16
Nickel (Ni):	12	mg/kg dw	1.0	97.5	16 Nov. 16
Selenium (Se):	4.3	mg/kg dw	1.0	87.2	16 Nov. 16
Zinc (Zn):	450	mg/kg dw	1.0	94.1	16 Nov. 16
Cobalt (Co)	2.8	mg/kg dw	0.50	92.1	16 Nov. 16
Total Solids (TMECC 03.09)	16	%	0.05	NA	11 Nov. 16

Pollutant Loading Rate:

Multiply mg/kg dry weight values times 0.016 to give you kilograms pollutant per 100 metric ton compost as-received based on a moisture content of 84.0 percent.

Method (metals): EPA 3050B / EPA 6010 Method (metals): TMECC 04.12-B / 04.14-A Method (Mercury Hg) TMECC 04.06 / EPA 7471 Method (Fecal Coliform): Standard Methods 9221E Method (Salmonella): TMECC 07.02-A

ang Sale

www.admiraltyenvironmental.com

CBJ Wastewater: Mendenhall TP

Permit AK-002321-3

Analytical Report

Admiralty Environmental EPA ID AK 00976

Juneau, AK

April 13, 2016

AE 14733

Sample Location	Effluent Composite	Influent Composite
Date & Time Sampled	4/13/2016; 09:50	4/13/2016; 09:25
Nitrate NO ₃ -N (mg/L)	0.46	0.12
Orthophosphate OPO₄-P (mg/L)	< 0.1	2.8
Sulfate SO₄ (mg/L)	36	36
Chloride CL ⁻ (mg/L)	36	37

Quality Control:

Analysis	MB	LCS	CS LCS Duplicate RPE		Date/Time Commenced	Holding Time Met
Nitrate	< 0.1	97.5%	97.0%	0.4%	4/13/2016; 16:59	yes
Orthophosphate	< 0.1	101.2%	99.5%	1.7%	4/13/2016; 16:59	yes
Sulfate	< 0.2	99.3%	99.23%	0.1%	4/19/2016; 10:32	yes
Chloride	< 0.1	101%	99.75%	1.2%	4/19/2016; 10:32	yes

Analysis Description:

Analysis	Method	MDL	PQL	Unit
Nitrate	EPA 300.0	0.027	0.10	mg/L
Orthophosphate	EPA 300.0	0.026	0.10	mg/L
Sulfate	EPA 300.0	0.042	0.20	mg/L
Chloride	EPA 300.0	0.027	0.10	mg/L

Key:

LCS	Laboratory Control Standard
MB	Method Blank
MDL	Method Detection Limit
mg/L	Milligrams Per Liter
MPN	Most Probable Number
ND	Not Detected
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference

Case Narrative:

All sample analysis QA/QC parameters were met for this event.

David Wetzel President, Admiralty Environmental <u>dwetzel@admiraltyenv.com</u>

MICROBAC[®]

Analytical Results

Friday, April 22, 2016

Date:

Client Project: CBJ N Client Sample ID: Efflue Sample Description: AE14 Matrix: Aque Analyses Action Fotal Recoverable Metals by Arsenic Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Manganese Molybdenum Nickel Potassium	733 oous	Certs dilj dij dilj	AT A A	Result Method: EPA 200.8 F	RL Rev 5.4	Work Or Sampleo Receiver Qual Units	d: d: DF	16D0879-0 04/13/2016 9:4 04/15/2016 9:4 Analyzed nalyst: PJB
Otal Recoverable Metals by Arsenic Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel		dilj dij dilj	A	Method: EPA 200.8 F			Ar	-
ArsenicBoronCadmiumCalciumChromiumCobaltCopperIronLeadMagnesiumManganeseMolybdenumNickel	ICP/MS	dij dilj			Rev 5.4			nalyst: PJB
Arsenic Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum		dij dilj				F	rep Date	/Time:04/19/2016 08:38
Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel		dilj	Α	ND	1.0	ppb		04/19/2016 15:41
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel		•		130	50	ppb	10	04/22/2016 13:08
Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel		I;	Α	ND	1.0	ppb	1	04/19/2016 15:41
Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel		lj	Α	28000	1000	ppb	10	04/20/2016 15:44
Copper Iron Lead Magnesium Manganese Molybdenum Nickel		dilj	Α	1.0	1.0	ppb	1	04/20/2016 15:40
Iron Lead Magnesium Manganese Molybdenum Nickel		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:41
Lead Magnesium Manganese Molybdenum Nickel		dilj	Α	17	1.0	ppb	1	04/19/2016 15:41
Magnesium Manganese Molybdenum Nickel		dij	Α	170	100	ppb	1	04/20/2016 15:40
Manganese Molybdenum Nickel		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:41
Molybdenum Nickel		I	Α	5500	100	ppb	1	04/20/2016 15:40
Nickel		dilj	Α	77	1.0	ppb	1	04/20/2016 15:40
		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:41
Potassium		dilj	Α	2.0	1.0	ppb	1	04/20/2016 15:40
		I	Α	12000	1000	ppb	10	04/20/2016 15:44
Selenium		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:41
Sodium		I	Α	38000	1000	ppb	10	04/20/2016 15:44
Zinc		dilj	Α	26	2.0	ppb	1	04/19/2016 15:41
otal Mercury by CVAA	I		P	Method: EPA 245.1 F rep Method: SW-846 747		F		nalyst: RM /Time: 04/19/2016 08:03
Mercury		dil	Α	ND	0.20	ppb	1	04/19/2016 12:35
otal Nitrogen (NO2+NO3+TF	(N)			i		F		nalyst: BRENAN /Time: 04/19/2016 12:50
Total Nitrogen (NO2+NO3+				24	5.1	mg/L	10	04/19/2016 17:40
itrate-Nitrite as N				Method: EPA 353.2 F	Rev 2.0	F		nalyst: BRENAN /Time: 04/19/2016 12:50
Nitrogen, Nitrate-Nitrite (as	N)	di	Α	0.57	0.10	mg/L	1	04/19/2016 15:01
itrogen, Ammonia as N			P	Method: EPA 350.1 F		ation F		nalyst: BRENAN /Time: 04/21/2016 10:55
Nitrogen, Ammonia (As N)		di	A	17	0.10	mg/L	1	04/21/2016 14:18
				Method: EPA 365.1 F	Rev 2.0		Ar	nalyst: BRENAN
otal Phosphorus as P Phosphorus, Total (As P)		dij	P	rep Method: Aqueous Pl 0.64	hosphorous D 0.20	igestion F mg/L	Prep Date	/Time: 04/21/2016 07:45 04/21/2016 10:38

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Analytical Results Date: Friday, April 22, 2016 Admiralty Environmental, LLC **Client:** CBJ Wastewater/ AE14733 **Client Project:** Effluent Work Order/ID: 16D0879-01 **Client Sample ID:** AE14733 04/13/2016 9:50 Sample Description: Sampled: Aqueous 04/15/2016 9:43 Matrix: **Received:** Units Certs AT Result RL DF Analyses Qual Analyzed Method: EPA 351.2 Rev 2.0 Analyst: BRENAN Total Kjeldahl Nitrogen as N Prep Method: Aqueous TKN Digestion Prep Date/Time:04/19/2016 08:25 Nitrogen, Kjeldahl, Total idj A 24 5.0 mg/L 10 04/19/2016 17:40

MICROBAC[®]

Analytical Results

Friday, April 22, 2016

Date:

Client:	Admiralty Environr	nental. LL	С					
Client Project:	CBJ Wastewater/		•					
lient Sample ID:	Influent					Work Or	der/ID:	16D0879-
ample Description:	AE14733					Sampleo		04/13/2016 9:
Aatrix:	Aqueous					Receive		04/15/2016 9:
Analyses		Certs	AT	Result	RL	Qual Units	DF	Analyzed
otal Recoverable Me	tals by ICP/MS			Method: EPA 200.8 R	ev 5.4	F		nalyst: PJB /Time: 04/19/2016 08:38
Arsenic		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:45
Boron		dij	Α	120	50	ppb	10	04/22/2016 13:12
Cadmium		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:45
Calcium		lj	Α	32000	1000	ppb	10	04/20/2016 15:52
Chromium		dilj	Α	2.0	1.0	ppb	1	04/20/2016 15:48
Cobalt		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:45
Copper		dilj	Α	80	1.0	ppb	1	04/19/2016 15:45
Iron		dij	Α	1600	100	ppb	1	04/20/2016 15:48
Lead		dilj	Α	1.5	1.0	ppb	1	04/19/2016 15:45
Magnesium		I	Α	6500	100	ppb	1	04/20/2016 15:48
Manganese		dilj	Α	110	1.0	ppb	1	04/20/2016 15:48
Molybdenum		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:45
Nickel		dilj	Α	2.9	1.0	ppb	1	04/20/2016 15:48
Potassium		1	Α	15000	1000	ppb	10	04/20/2016 15:52
Selenium		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:45
Sodium		I	Α	39000	1000	ppb	10	04/20/2016 15:52
Zinc		dilj	Α	150	2.0	ppb	1	04/19/2016 15:45
otal Mercury by CVA	A		F	Method: EPA 245.1 R Prep Method: SW-846 747		F		nalyst: RM /Time: 04/19/2016 08:03
Mercury		dil	Α	ND	0.20	ppb	1	04/19/2016 12:36
otal Nitrogen (NO2+N	1O3+TKN)					F		nalyst: BRENAN /Time: 04/19/2016 12:50
Total Nitrogen (NO2	+NO3+TKN)			50	2.6	mg/L	1	04/19/2016 17:26
litrate-Nitrite as N				Method: EPA 353.2 R	ev 2.0	F		nalyst: BRENAN /Time: 04/19/2016 12:50
Nitrogen, Nitrate-Nit	rite (as N)	di	Α	0.19	0.10	mg/L	1	04/19/2016 15:03
litrogen, Ammonia as	• N	1	F	Method: EPA 350.1 R Prep Method: Aqueous Ar		ation F		nalyst: BRENAN /Time: 04/21/2016 10:55
Nitrogen, Ammonia		di	A	26	0.20	mg/L	1	04/21/2016 14:20
	<u> </u>	I		Method: EPA 365.1 R	ev 2.0		A	nalyst: BRENAN
otal Phosphorus as I			_	Prep Method: Aqueous Pr	-	_		/Time:04/21/2016 07:45
Phosphorus, Total (as P)	dij	A	4.7	0.20	mg/L	1	04/21/2016 10:39

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Analytical Results Date: Friday, April 22, 2016 Admiralty Environmental, LLC **Client:** CBJ Wastewater/ AE14733 **Client Project:** Influent Work Order/ID: 16D0879-02 **Client Sample ID:** AE14733 04/13/2016 9:25 Sample Description: Sampled: 04/15/2016 9:43 Matrix: Aqueous **Received:** Units Certs AT Result RL DF Analyses Qual Analyzed Analyst: BRENAN Method: EPA 351.2 Rev 2.0 Total Kjeldahl Nitrogen as N Prep Method: Aqueous TKN Digestion Prep Date/Time:04/19/2016 08:25 Nitrogen, Kjeldahl, Total idj A 49 2.5 mg/L 1 04/19/2016 17:26

m3 = Meters cubed MDL = Method Detection Limit

NA = Not Analyzed

NR = Not Recovered

RL = Reporting Limit

Surr = Surrogate U = Undetected

> = Greater than
< = Less than</pre>

% = Percent

mg/Kg = Milligrams per Kilogram (ppm)

R = RPD outside accepted recovery limits

S = Spike recovery outside recovery limits

* = Result exceeds project specific limits

ND = Not Detected at the Reporting Limit (or the Method Detection Limit, if used)

mg/L = Milligrams per Liter (ppm)

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

- B = Detected in the associated method Blank at a concentration above the
- routine RL b- = Detected in the associated method Blank at a concentration greater
- than 2.2 times the MDL
- b* = Detected in the associated method Blank at a concentration greater
- than half the RL
- CFU = Colony forming units
- D = Dilution performed on sample
- DF = Dilution Factor
- g = Gram
- E = Value above quantitation range
- ${\rm H}$ = Analyte was prepared and/or analyzed outside of the analytical method holding time
- I = Matrix Interference
- J = Analyte concentration detected between RL and MDL (Metals / Organics)
- LOD = Limit of Detection
- LOQ = Limit of Quantitation

ANALYTE TYPES: (AT)

- A,B = Target Analyte
- I = Internal Standard
- M = Summation Analyte
- S = Surrogate
- T = Tentatively Identified Compound (TIC, concentration estimated)

QC SAMPLE IDENTIFICATIONS

BLK = Method Blank DUP = Method Duplicate BS = Method Blank Spike MS = Matrix Spike ICB = Initial Calibration Blank CCB = Continuing Calibration Blank CRL = Client Required Reporting Limit PDS = Post Digestion Spike QCS = Quality Control Standard ICSA = Interference Check Standard "A" ICSAB = Interference Check Standard "AB" BSD = Method Blank Spike Duplicate MSD = Matrix Spike Duplicate ICV = Initial Calibration Verification CCV = Continuing Calibration Verification OPR = Ongoing Precision and Recovery Standard SD = Serial Dilution

CERTIFICATIONS (Certs)

Below is a list of certifications maintained by the Microbac Merrillville Laboratory. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. Complete lists of individual analytes pursuant to each certification below are available upon request.

- USDA Permit To Receive Soil (#P330-13-00270)
- Indiana DEM support lab wastewater and solid waste (#A305-9-292)
- a A2LA ISO/IEC 17025 Biological Testing (#3045.01)
- b A2LA ISO/IEC 17025 Env. DoD Testing (#3045.02)
- ^c Center of Disease Control Legionella ELITE Membership
- d Illinois EPA drinking water, wastewater and solid waste analysis (#200064)
- e Illinois DOPH Micro analysis of drinking water (#1755266)
- f Indiana SDH Micro analysis of drinking water (#M-45-8)
- ^g Indiana SDH chemical analysis of drinking water (#C-45-03)
- ^h Indiana State Board of Animal Health for microbiological analysis of dairy containers (#18137)
- ⁱ Kansas Dept Health & Env. NELAP (#E-10397)
- J Kentucky Wastewater Laboratory Certification Program (#90147)
- k Kentucky EPPC analysis Underground Storage Tanks (#75)
- North Carolina DENR NPDES effluent, surface water (#597)
- m New York State Department of Health Wadsworth (#12006)
- ⁿ Pennsylvania Department of Environmental Protect (#68-04863)
- Virginia Department of General Services Division of Consolidated Laboratory Services (#7990)
- ^p Washington State Department of Ecology (#C992)

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Page 8 of 23

641 W. Willoughby Ave., Suite 301 Juneau, AK 99801 (907) 463 - 4415 Fax (480) 247 - 4476

www.admiraltyenvironmental.com

CBJ Wastewater: Juneau-Douglas TP

Permit AK-002321-3

Analytical Report Admiralty Environmental EPA ID AK 00976

April 13, 2016

Juneau, AK

AE 14732

Sample Location	Effluent Composite	Influent Composite
Date & Time Sampled	4/13/2016; 08:35	4/13/2016; 08:30
Nitrate NO ₃ -N (mg/L)	0.59	< 0.2
Orthophosphate OPO₄-P (mg/L)	2.1	3.9
Sulfate SO₄ (mg/L)	110	77
Chloride CL ⁻ (mg/L)	600	350

Quality Control:

Analysis	МВ	LCS	LCS Duplicate		Date/Time Commenced	Holding Time Met
Nitrate	< 0.1	97.5%	97.0%	0.4%	4/13/2016; 09:21	yes
Orthophosphate	< 0.1	101.2%	99.5%	1.7%	4/13/2016; 09:21	yes
Sulfate	< 0.2	99.3%	99.2%	0.1%	4/19/2016; 10:32	yes
Chloride	< 0.1	101%	99.8%	1.2%	4/19/2016; 10:32	yes

Analysis Description:

Analysis	Method	MDL	PQL	Unit
Nitrate	EPA 300.0	0.027	0.10	mg/L
Orthophosphate	EPA 300.0	0.026	0.10	mg/L
Sulfate	EPA 300.0	0.042	0.20	mg/L
Chloride	EPA 300.0	0.027	0.10	mg/L

Key:

LCS	Laboratory Control Standard
MB	Method Blank
MDL	Method Detection Limit
mg/L	Milligrams Per Liter
MPN	Most Probable Number
ND	Not Detected
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference

Case Narrative:

All sample analysis QA/QC parameters were met for this event.

un

David Wetzel President, Admiralty Environmental <u>dwetzel@admiraltyenv.com</u>

MICROBAC[®]

Analytical Results

Friday, April 22, 2016

Date:

Client: Client Project:	Admiralty Environ		С					
lient Sample ID: ample Description: latrix:	Effluent AE14732 Aqueous	NE 147 02				Work Or Sample Receive	d:	-16D0878 :04/13/2016 8 :04/15/2016 9
nalyses		Certs	AT	Result	RL	Qual Units	DF	Analyzed
otal Recoverable Me	tale by ICD/MS			Method: EPA 200.8	Rev 5.4			nalyst: PJB e/Time: 04/19/2016 08:38
Arsenic		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:25
Boron		dij	Α	230	50	ppb	10	04/22/2016 13:00
Cadmium		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:25
Calcium		lj	Α	39000	1000	ppb	10	04/20/2016 15:28
Chromium		dilj	Α	ND	1.0	ppb	1	04/20/2016 15:24
Cobalt		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:25
Copper		dilj	Α	11	1.0	ppb	1	04/19/2016 15:25
Iron		dij	Α	ND	100	ppb	1	04/20/2016 15:24
Lead		dilj	Α	ND	1.0	ppb	1	04/19/2016 15:25
Magnesium			Α	43000	1000	ppb	10	04/20/2016 15:28
Manganese		dilj	Α	42	1.0	ppb	1	04/20/2016 15:24
Molybdenum		dilj	Α	1.1	1.0	ppb	1	04/19/2016 15:25
Nickel		dilj	Α	2.1	1.0	ppb	1	04/20/2016 15:24
Potassium			Α	22000	1000	ppb	10	04/20/2016 15:28
Selenium		dilj	Α	6.9	1.0	ppb	1	04/19/2016 15:25
Sodium			Α	300000	10000	ppb	100	04/21/2016 19:56
Zinc		dilj	Α	37	2.0	ppb	1	04/19/2016 15:25
otal Mercury by CVA	A		F	Method: EPA 245.1 Prep Method: SW-846 74				nalyst: RM e/Time: 04/19/2016 08:03
Mercury		dil	Α	ND	0.20	ppb	1	04/19/2016 12:33
otal Nitrogen (NO2+N	NO3+TKN)					I		nalyst: BRENAN e/Time: 04/19/2016 12:50
Total Nitrogen (NO2	2+NO3+TKN)			19	0.60	mg/L	1	04/19/2016 17:19
itrate-Nitrite as N				Method: EPA 353.2	Rev 2.0			nalyst: BRENAN e/Time: 04/19/2016 12:50
Nitrogen, Nitrate-Nit	trite (as N)	di	Α	0.57	0.10	mg/L	1	04/19/2016 14:57
itrogen, Ammonia as	= N			Method: EPA 350.1		lation		nalyst: BRENAN e/Time: 04/21/2016 10:55
Nitrogen, Ammonia		di	A	14	0.10	mg/L	1	04/21/2016 14:10
				Method: EPA 365.1	Rev 2.0		A	nalyst: BRENAN
otal Phosphorus as I			_	Prep Method: Aqueous F	-	-		e/Time:04/21/2016 07:45
Phosphorus, Total (AS P)	dij	Α	1.1	0.20	mg/L	1	04/21/2016 10:36

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Analytical Results Date: Friday, April 22, 2016 Admiralty Environmental, LLC **Client:** CBJ Wastewater/ AE14732 **Client Project:** Effluent Work Order/ID: 16D0878-01 **Client Sample ID:** AE14732 04/13/2016 8:35 Sample Description: Sampled: Aqueous Matrix: **Received:** 04/15/2016 9:42 Units Certs AT Result RL DF Analyses Qual Analyzed Analyst: BRENAN Method: EPA 351.2 Rev 2.0 Total Kjeldahl Nitrogen as N Prep Method: Aqueous TKN Digestion Prep Date/Time:04/19/2016 08:25 Nitrogen, Kjeldahl, Total idj A 18 0.50 mg/L 1 04/19/2016 17:19

MICROBAC[®]

Analytical Results

Friday, April 22, 2016

Date:

Client: Client Project:	Admiralty Environr CBJ Wastewater/		С						
Client Sample ID: Influent Sample Description: AE14732 Matrix: Aqueous						Work Or Sample Receive	d:	16E 04/13/20 04/15/20	
nalyses		Certs	AT	Result	RL	Qual Units	DF	Analyz	ed
otal Recoverable Met	als by ICP/MS			Method: EPA 200.8 F	Rev 5.4	F		nalyst: PJB /Time: 04/19/201	6 08:38
Arsenic		dilj	Α	ND	1.0	ppb	1	04/19/2016	
Boron		dij	Α	170	50	ppb	10	04/22/2016	13:04
Cadmium		dilj	Α	ND	1.0	ppb	1	04/19/2016	15:37
Calcium		lj	Α	36000	1000	ppb	10	04/20/2016	15:36
Chromium		dilj	Α	1.7	1.0	ppb	1	04/20/2016	15:32
Cobalt		dilj	Α	ND	1.0	ppb	1	04/19/2016	15:37
Copper		dilj	Α	61	1.0	ppb	1	04/19/2016	15:37
Iron		dij	Α	510	100	ppb	1	04/20/2016	15:32
Lead		dilj	Α	2.4	1.0	ppb	1	04/19/2016	15:37
Magnesium		1	Α	28000	1000	ppb	10	04/20/2016	15:36
Manganese		dilj	Α	56	1.0	ppb	1	04/20/2016	15:32
Molybdenum		dilj	Α	ND	1.0	ppb	1	04/19/2016	15:37
Nickel		dilj	Α	3.5	1.0	ppb	1	04/20/2016	15:32
Potassium		1	Α	19000	1000	ppb	10	04/20/2016	15:36
Selenium		dilj	Α	5.2	1.0	ppb	1	04/19/2016	15:37
Sodium			Α	180000	10000	ppb	100	04/21/2016	20:04
Zinc		dilj	Α	100	2.0	ppb	1	04/19/2016	
otal Mercury by CVA	4		_	Method: EPA 245.1 F Prep Method: SW-846 747	70		Prep Date	nalyst: RM /Time: 04/19/201	
Mercury		dil	A	ND	0.20	ppb	1	04/19/2016	12:34
()))))))))))))))))))))))))))))))))))))								nalyst: BRENAN	0 40.50
otal Nitrogen (NO2+N Total Nitrogen (NO2			_	37	2.6	mg/L	· ·	/Time:04/19/201 04/19/2016	
itrate-Nitrite as N				Method: EPA 353.2 F	1		A	nalyst: BRENAN /Time:04/19/201	
Nitrogen, Nitrate-Nit	rite (as N)	di	Α	0.11	0.10	mg/L	1	04/19/2016	
				Method: EPA 350.1 F		lation		nalyst:BRENAN /Time:04/21/201	
itrogen, Ammonia as Nitrogen, Ammonia		di	A	19	0.20	mg/L	1 1	04/21/2016	
				Method: EPA 365.1 F				nalyst: BRENAN	
otal Phosphorus as F)		F	rep Method: Aqueous P		igestion		/Time:04/21/201	
Phosphorus, Total (A	As P)	dij	Α	5.1	0.20	mg/L	1	04/21/2016	10.37

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Analytical Results Date: Friday, April 22, 2016 Admiralty Environmental, LLC **Client:** CBJ Wastewater/ AE14732 **Client Project:** Influent Work Order/ID: 16D0878-02 **Client Sample ID:** AE14732 04/13/2016 8:30 Sample Description: Sampled: Matrix: Aqueous **Received:** 04/15/2016 9:42 Units Certs AT Result RL DF Analyses Qual Analyzed Analyst: BRENAN Method: EPA 351.2 Rev 2.0 Total Kjeldahl Nitrogen as N Prep Method: Aqueous TKN Digestion Prep Date/Time:04/19/2016 08:25 Nitrogen, Kjeldahl, Total idj A 37 2.5 mg/L 1 04/19/2016 17:23

m3 = Meters cubed MDL = Method Detection Limit

NA = Not Analyzed

NR = Not Recovered

RL = Reporting Limit

Surr = Surrogate U = Undetected

> = Greater than
< = Less than</pre>

% = Percent

mg/Kg = Milligrams per Kilogram (ppm)

R = RPD outside accepted recovery limits

S = Spike recovery outside recovery limits

* = Result exceeds project specific limits

ND = Not Detected at the Reporting Limit (or the Method Detection Limit, if used)

mg/L = Milligrams per Liter (ppm)

FLAGS, FOOTNOTES AND ABBREVIATIONS (as needed)

- B = Detected in the associated method Blank at a concentration above the
- routine RL b- = Detected in the associated method Blank at a concentration greater
- than 2.2 times the MDL
- b* = Detected in the associated method Blank at a concentration greater
- than half the RL
- CFU = Colony forming units
- D = Dilution performed on sample
- DF = Dilution Factor
- g = Gram
- E = Value above quantitation range
- ${\rm H}$ = Analyte was prepared and/or analyzed outside of the analytical method holding time
- I = Matrix Interference
- J = Analyte concentration detected between RL and MDL (Metals / Organics)
- LOD = Limit of Detection
- LOQ = Limit of Quantitation

ANALYTE TYPES: (AT)

- A,B = Target Analyte
- I = Internal Standard
- M = Summation Analyte
- S = Surrogate
- T = Tentatively Identified Compound (TIC, concentration estimated)

QC SAMPLE IDENTIFICATIONS

BLK = Method Blank DUP = Method Duplicate BS = Method Blank Spike MS = Matrix Spike ICB = Initial Calibration Blank CCB = Continuing Calibration Blank CRL = Client Required Reporting Limit PDS = Post Digestion Spike QCS = Quality Control Standard ICSA = Interference Check Standard "A" ICSAB = Interference Check Standard "AB" BSD = Method Blank Spike Duplicate MSD = Matrix Spike Duplicate ICV = Initial Calibration Verification CCV = Continuing Calibration Verification OPR = Ongoing Precision and Recovery Standard SD = Serial Dilution

CERTIFICATIONS (Certs)

Below is a list of certifications maintained by the Microbac Merrillville Laboratory. All data included in this report has been reviewed for and meets all project specific and quality control requirements of the applicable accreditation, unless otherwise noted. Complete lists of individual analytes pursuant to each certification below are available upon request.

- USDA Permit To Receive Soil (#P330-13-00270)
- Indiana DEM support lab wastewater and solid waste (#A305-9-292)
- a A2LA ISO/IEC 17025 Biological Testing (#3045.01)
- b A2LA ISO/IEC 17025 Env. DoD Testing (#3045.02)
- ^c Center of Disease Control Legionella ELITE Membership
- d Illinois EPA drinking water, wastewater and solid waste analysis (#200064)
- e Illinois DOPH Micro analysis of drinking water (#1755266)
- f Indiana SDH Micro analysis of drinking water (#M-45-8)
- ^g Indiana SDH chemical analysis of drinking water (#C-45-03)
- ^h Indiana State Board of Animal Health for microbiological analysis of dairy containers (#18137)
- ⁱ Kansas Dept Health & Env. NELAP (#E-10397)
- J Kentucky Wastewater Laboratory Certification Program (#90147)
- k Kentucky EPPC analysis Underground Storage Tanks (#75)
- North Carolina DENR NPDES effluent, surface water (#597)
- m New York State Department of Health Wadsworth (#12006)
- ⁿ Pennsylvania Department of Environmental Protect (#68-04863)
- Virginia Department of General Services Division of Consolidated Laboratory Services (#7990)
- ^p Washington State Department of Ecology (#C992)

Microbac Laboratories, Inc.

250 West 84th Drive | Merrillville, IN 46410 | 800.536.8379 p | 219.769.8378 p | 219.769.1664 f | www.microbac.com

Page 8 of 23