### DOUGLAS HARBOR

Dredged Disposal Test Summary 5 March 2010 Juneau, Alaska

## Outline

- Background
- Project Collaboration
- Testing Guidance
- Objectives
- Test Design and SAP
- Test Results
- Comparison to Guidance & Regulatory Values

## Background

- This is <u>Not</u> Site Designation; site previously approved for use by USEPA/USACE
- Disposal analysis options for Inland (404) or MPRSA (Ocean) unconfined disposal of dredged materials
  - Federal guidance is based on effects-based testing not simply sediment or water chemistry
  - Data interpretation is consistent nationally and described in two joint publications by USACE/USEPA; states can increase level of scrutiny
  - Statistical and biological Comparisons relative to Reference sites
    - Reference sites are similar to disposal sites but without any signs of historical disposal.
- Testing provides scientific FACTUAL information and conclusions can be used to make informed decisions

# Background (Continued)

- Factual Information includes:
  - Physical and chemical spatial data collected from representative quantities of dredged material
  - Modeling
    - STFATE modeling to assess potential adverse biological effects extending outside of boundaries
    - STFATE modeling to assess chemical-specific water quality exceedance within or outside of the boundary of the disposal site
  - Biological response data
    - Bedded sediment biological response data with representative /sensitive species of benthic organisms
    - Suspended sediment acute and sublethal toxicity with sensitive species, including abnormal development of bivalve or echinoderm larvae
    - Bioaccumulation data to assess:
      - Body burden and potential adverse biological effects (ecological assessment)
      - Body burden and food web modeling to determine potential effects within food web, including human health

## Objectives

- Collect test sediment to project depth using a vibratory or push core.
- Collect reference sediment from the proposed reference area (five spatial replicates and one reference composite made from five spatial replicates) using a Van Veen grab.
- Conduct toxicity testing of test, reference, and control sediments using ITM methods for water-column toxicity, benthic toxicity, and bioaccumulation potential.
- Measure mercury concentrations in sediment, pore water, and tissue.
- Prepare a detailed interpretative report of methods, results, and a comparison of test and reference materials using ITM guidance for test acceptability and evaluation criteria.

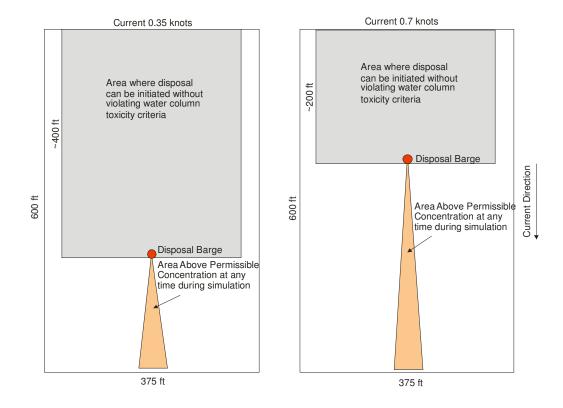
## **Testing Design**

- Project SAP was reviewed, modified and approved by agencies prior to testing; sampling site and testing site visits
- Protocols followed ITM with Tier II/III/IV analysis
  - Collected sediment to project depth (-14 ft MLLW) using a vibratory or a push core.
  - Collected reference sediment from proposed reference area using approach approved by agencies.
  - Conducted toxicity testing for water-column, benthic toxicity, and bioaccumulation potential disposal site modeling.
  - Measured a selected suite of potential contaminants of concern in sediment, pore water, and tissue.

## Field Sampling Information

| Date     | Station  | Comp.      | Latitude    | Longitude   | MLLW Water<br>Depth | Number of<br>Cores | Core Length<br>(ft) | Upper<br>Composite<br>(ft) | Lower<br>Composite<br>(ft) |
|----------|----------|------------|-------------|-------------|---------------------|--------------------|---------------------|----------------------------|----------------------------|
| 11/17/08 | PND07-01 | 1          | 58° 16.513  | 134° 23.131 | -6                  | 1                  | 10.5                | 1.3                        | 8                          |
| 11/21/08 | PND07-02 | 1          | 58° 16.478  | 134° 23.138 | +8                  | 3                  | 1.5/1.5/1.5         | 1 each                     | 0                          |
| 11/21/08 | PND07-03 | 1          | 58º 16.494  | 134° 23.143 | +8                  | 3                  | 1.5/1.5/1.5         | 1 each                     | 0                          |
| 11/18/08 | PND07-04 | 1          | 58° 16.473  | 134° 23.182 | -10                 | 1                  | 3.0                 | 2                          | 1                          |
| 11/18/08 | PND07-05 | 2          | 58° 16.497  | 134° 23.230 | -9                  | 2                  | 4.5/3.1             | 1.8/1.8                    | 2.7/1.4                    |
| 11/18/08 | PND07-06 | 2          | 58° 16.506  | 134° 23.248 | -9                  | 2                  | 4.2/3.0             | 1.7/1.7                    | 2.5/1.3                    |
| 11/19/08 | PND07-07 | 2          | 58° 16.489  | 134° 23.223 | -8.5                | 2                  | 2.6/1.5             | 1/1                        | 1.6/0.5                    |
| 11/18/08 | NF08-17  | 2          | 58° 16.496  | 134° 23.238 | -9                  | 2                  | 3.9/5.0             | 1.7/2.7                    | 2.2/2.3                    |
| 11/21/08 | PND07-14 | <b>4</b> A | 58° 16.527  | 134° 23.185 | -10                 | 1                  | 1.0                 | 1                          | 0                          |
| 11/18/08 | PND07-16 | 4A         | 58° 16.515  | 134° 23.163 | -11                 | 1                  | 2.5                 | 1.3                        | 1.2                        |
| 11/19/08 | NF08-19  | <b>4</b> A | 58° 16.533  | 134° 23.221 | -10.5               | 1                  | 4.6                 | 3                          | 2.6                        |
| 11/18/08 | NF08-20  | 4A         | 58° 16.517  | 134° 23.189 | -10.5               | 1                  | 7.5                 | 2                          | 2.5                        |
| 11/19/08 | NF08-23  | 4A         | 58° 16.504  | 134° 23.151 | -9                  | 1                  | 6.0                 | 3                          | 3                          |
| 11/19/08 | PND07-13 | 4B         | 58° 16.507  | 134° 23.232 | -11.5               | 1                  | 4.0                 | 1.3                        | 1.7                        |
| 11/18/08 | PND07-15 | 4B         | 58° 16.501  | 134º 23.181 | -11                 | 1                  | 4.2                 | 1.6                        | 2.6                        |
| 11/19/08 | NF08-18  | 4B         | 58° 16.514  | 134° 23.237 | -7.5                | 1                  | 5.2                 | 4.8                        | 0.4                        |
| 11/19/08 | NF-08-21 | 4B         | 58° 16.500  | 134° 23.207 | -9                  | 1                  | 5.2                 | 2.5                        | 2.7                        |
| 11/19/08 | NF08-22  | 4B         | *58° 16.485 | 134° 23.175 | -9.5                | 1                  | 4.2                 | 2.3                        | 1.9                        |

### Locations within Douglas Harbor




## **Toxicity Test Results**

| Summary Results                                                                   | Area 1                                                                       | Area 2             | Area 4A        | Area 4B             | Area 4B<br>Acclimate<br>d | Lower<br>Comp | Lower Comp<br>Acclimated |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------|----------------|---------------------|---------------------------|---------------|--------------------------|
| Benthic (% survival)                                                              |                                                                              | comp               | osites pass    | ITM/ PSDE           | DA Evaluation             | Criteria      |                          |
| A. abdita                                                                         | 92                                                                           | 92                 | 90             | 87                  | 94                        | 76            | 94                       |
| N. arenaceodentata                                                                | 96                                                                           | 88                 | 92             | 100                 | NA                        | 84            | NA                       |
| Water-column<br>(LC <sub>50</sub> or EC <sub>50</sub> )                           | Composites pass Water Column Criteria (ST Fate Model )                       |                    |                |                     |                           |               |                          |
| A. bahia                                                                          | >100%                                                                        | >100%              | >100%          | >100%               | NA                        | >100%         | NA                       |
| M. beryllina                                                                      | >100%                                                                        | >100%              | >100%          | >100%               | NA                        | >100%         | NA                       |
| Mytilus. Sp.                                                                      | >100%                                                                        | 87.3               | 74.6           | 42.2*               | NA                        | > 100%        | NA                       |
| Mean Total                                                                        | Environmenta                                                                 | Effects P          | rotection c    | of 95% all c        | acute, chronic,           | and suble     | thal responses           |
| Mercury Conc.                                                                     | ERED NOED :                                                                  | ≤0 <b>.</b> 09 ERI | Ed loed $\leq$ | 0 <b>.</b> 23 (n=24 | 42 and 92 re              | spectively    | ) – presumed             |
| (mg/kg wet)                                                                       | to be on methyl Hg which are the principal Hg compound in biological tissues |                    |                |                     |                           |               |                          |
| M. nasuta                                                                         | 0.027                                                                        | 0.052              | 0.039          | 0.041               | NA                        | NA            | 0.213                    |
| N. caecoides                                                                      | 0.008                                                                        | 0.012              | 0.010          | 0.009               | NA                        | NA            | 0.027                    |
| * Effect in water column assessment is related to ammonia concentration in sample |                                                                              |                    |                |                     |                           |               |                          |

## ST Fate Model Output

- Modeling Runs
  - Tier III option to determine compliance with <u>toxicity</u> assessments
  - Tier II for Hg water quality criteria during disposal
- Tier III Toxicity effects contained within the disposal site at both average and maximum tidal currents
- Tier II
  - Maximum Hg porewater concentrations observed in the Douglas Harbor sediments (0.029 µg/L) did not exceed the lowest Alaska water quality standard in Table 1 (0.051 µg/L) at any time during the one-hour simulation
  - A porewater concentration <u>250 times</u> <u>higher</u> than the maximum observed concentration would be needed to violate the criteria at 1.5 minutes after initiation of the disposal operation, at 3 minutes the violation ends. Violation is only at the site of disposal barge.



### Specialized Mercury Analysis

- Battelle Marine Sciences Laboratory conducted the mercury analysis. High reputation among analytical laboratories for conducting mercury analysis.
- Helped EPA develop the standardized procedure for methyl Hg assessment in sediment. Validation study participant.
- Total and methyl mercury were analyzed in sediment; total, dissolved, and methyl Hg were analyzed in pore water and total mercury was analyzed in tissues of test organisms.

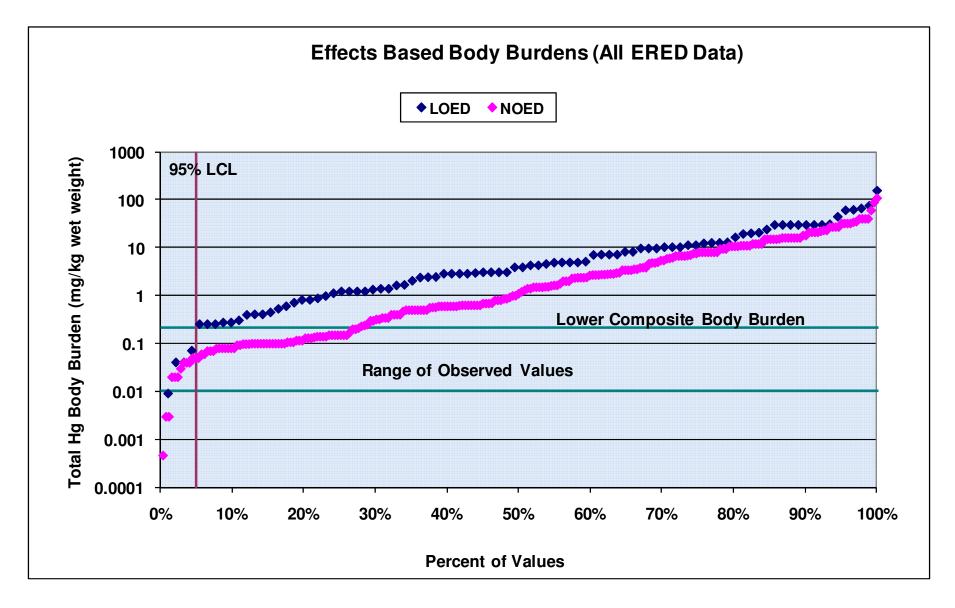
### Porewater Mercury Concentrations

|                       |         | Pore \   | Nater     |  |
|-----------------------|---------|----------|-----------|--|
| Station Composite     | Volume  | Total Ha | Measured  |  |
| Station Composite     | су      | Total Hg | Methyl Hg |  |
|                       |         | ng/L     | ng/L      |  |
| Station 1             | 2000    | 13.1     | 0.35      |  |
| Station 2             | 900     | 25.3     | 0.23      |  |
| Station 4A            | 5300    | 14.8     | 0.38      |  |
| Station 4B            | 5900    | 17.4     | 0.23      |  |
| Lower Composite 15400 |         | 29.2     | 0.979     |  |
| Weighted Mean         | Upper   | 16.3     | 0.303     |  |
| Weighted Mean         | Lower   | 29.2     | 0.98      |  |
| Weighted Mean C       | ombined | 23.0     | 0.66      |  |

#### Comparisons to Alaska Administrative Code

|                                |                           | Water          |
|--------------------------------|---------------------------|----------------|
|                                | Total Hg                  |                |
|                                | ng/L                      | Methyl Hg ng/L |
| Comparison to 18 ACC           | 75, Table C               |                |
| Groundwater Cleanup Level      | 2000                      | 3700           |
| Comparison to Water Quality (  | Criteria (ADEC            | 2008)          |
| Aquatic Life, Fresh Water CMC  | 1400                      |                |
| Aquatic Life, Fresh Water CCC  | 770                       |                |
| Aquatic Life, Marine Water CMC | 1800                      |                |
| Aquatic Life, Marine Water CCC | 940                       |                |
| Human Health Water+Aquatic Org | 50                        |                |
| Human Health Aquatic Org Only  | 51                        |                |
| Douglas Harbor Porewate        | <sup>-</sup> Concentratio | ns             |
| Weighted Mean Upper            | 16.3                      | 0.303          |
| Weighted Mean Lower            | 29.2                      | 0.98           |
| Weighted Mean Combined         | 23.0                      | 0.66           |

## **Mercury Concentrations in Sediment**


|               |         | Sediment     |           |  |  |  |
|---------------|---------|--------------|-----------|--|--|--|
|               |         | (dry weight) |           |  |  |  |
|               |         |              | Measured  |  |  |  |
| Station       | Volume  | Total Hg     | Methyl Hg |  |  |  |
| Composite     | cy      | µg/g         | µg/g      |  |  |  |
| Station 1     | 2000    | 1.11         | 0.0025    |  |  |  |
| Station 2     | 900     | 2.5          | 0.0008    |  |  |  |
| Station 4A    | 5300    | 3.22         | 0.0013    |  |  |  |
| Station 4B    | 5900    | 2.33         | 0.0011    |  |  |  |
| Lower         |         |              |           |  |  |  |
| Composite     | 15400   | 2.24         | 0.0026    |  |  |  |
| Reference     | NA      | 0.226        | 0.00000   |  |  |  |
| Composite     | NA      | 0.220        | 0.00028   |  |  |  |
| Weighted Mean | n Upper | 2.50         | 0.0014    |  |  |  |
| Weighted Mea  | n Lower | 2,24         | 0.0026    |  |  |  |
| Weighted M    | \ean    |              |           |  |  |  |
| Combine       | d       | 2.37         | 0.0020    |  |  |  |

| Comparison to 18 AAC 75,<br>Table B1  | Total Hg<br>µg∕g | Methyl Hg<br>µg∕g |
|---------------------------------------|------------------|-------------------|
| Soil Cleanup Level, Direct<br>Contact | 25               | 0.0063            |
| Migration to Groundwater              | 1.4              | 0.000012          |

## Tissue Concentrations (ppm)

| Summary<br>Results                                                                                | Area 1      | Area 2    | Area 4A    | Area 4B    | Lower Comp<br>Acclimated* |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------|-----------|------------|------------|---------------------------|--|--|--|
| Mean Total Mercury Concentration (mg/kg wet weight)                                               |             |           |            |            |                           |  |  |  |
| M. nasuta                                                                                         | 0.027       | 0.052     | 0.039      | 0.041      | 0.213                     |  |  |  |
| N. caecoides                                                                                      | 0.008       | 0.012     | 0.010      | 0.009      | 0.027                     |  |  |  |
|                                                                                                   | Mean Estimo | ated Meth | nyl Hg (mg | /kg wet we | eight)                    |  |  |  |
| M. nasuta                                                                                         | 0.012       | 0.023     | 0.017      | 0.018      | 0.094                     |  |  |  |
| N. caecoides                                                                                      | 0.004       | 0.005     | 0.004      | 0.004      | 0.012                     |  |  |  |
| $^{st}$ Lower comp acclimated to reduce sulfide concentrations and create an aerobic biogenically |             |           |            |            |                           |  |  |  |
| active microbial layer near the sediment water interface                                          |             |           |            |            |                           |  |  |  |

## ERED Graph – Ecological Effects

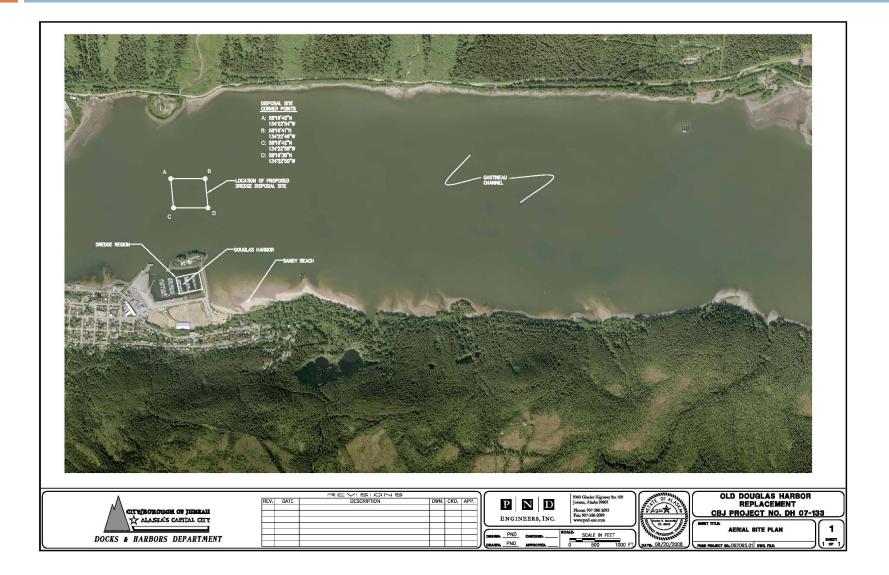


## **Bioaccumulation Potential**

|                                                                                                                 | Pore Water<br>(ng/L)                                                                    |              |                        |              | Macoma                 | •           | Nepthys      |                        |                |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|------------------------|--------------|------------------------|-------------|--------------|------------------------|----------------|--|
|                                                                                                                 |                                                                                         |              |                        | (wet weight) |                        |             | (wet weight) |                        |                |  |
| Station<br>Composite                                                                                            | Total Hg<br>ηg/L                                                                        | Methyl<br>Hg | Estimated<br>Volume cy | Total<br>Hg  | Estimated<br>Methyl Hg | -           | Total Hg     | Estimated<br>Methyl Hg | Project<br>BAF |  |
|                                                                                                                 |                                                                                         | ηg/L         |                        | mg/kg        | mg/kg                  | × 10⁵       | mg/kg        | mg/kg                  | X 10⁵          |  |
| Station 1                                                                                                       | 13.1                                                                                    | 0.347        | 2000                   | 0.03         | 0.012                  | 0.34        | 0.008        | 0.003                  | 0.08           |  |
| Station 2                                                                                                       | 25.3                                                                                    | 0.225        | 900                    | 0.05         | 0.023                  | 1.0         | 0.012        | 0.005                  | 0.22           |  |
| Station 4A                                                                                                      | 14.8                                                                                    | 0.382        | 5300                   | 0.04         | 0.017                  | 0.45        | 0.010        | 0.004                  | 0.11           |  |
| Station 4B                                                                                                      | 17.4                                                                                    | 0.225        | 5900                   | 0.04         | 0.018                  | 0.8         | 0.009        | 0.004                  | 0.17           |  |
| Lower<br>Composite                                                                                              | 29.2                                                                                    | 0.979        | 15400                  | 0.21         | 0.092                  | 0.94        | 0.027        | 0.012                  | 0.12           |  |
| Reference<br>Comp                                                                                               | 8.83                                                                                    | 0.433        | NA                     | 0.016        | 0.007                  | 0.16        | 0.008        | 0.004                  | .09            |  |
| · · · ·                                                                                                         | Maximum/Mean Estimated Trophic 4 methyl Hg<br>Projection <sup>b</sup> - Lower Composite |              |                        |              |                        | 0.157/0.105 |              |                        |                |  |
| Estimated Trophic Level 4 Projection <sup>b</sup> - Reference<br>Composite                                      |                                                                                         |              |                        |              | 0.069                  |             |              |                        |                |  |
| a Project BAF is                                                                                                | a Project BAF is Tissue methylHg concentration/Pore Water methylHg Concentration        |              |                        |              |                        |             |              |                        |                |  |
| b BAF values from OHHEA 2006 used to calculate estimated trophic level IV tissue levels = 1.6 X 10 <sup>5</sup> |                                                                                         |              |                        |              |                        |             |              |                        |                |  |

c Tissue level for unrestricted consumption of fish and shellfish is  $\leq 0.15 \text{ mg/kg}$  wet (Verbrugge 2007).

#### **Tissue Level Comparisons**


| Guidance<br>Value (mg/kg<br>Wet) | Protection Level                                                                                                | Source                          |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------|
| 0.003 to 0.09                    | Methyl Hg concentration range for bioaccumulation exposures                                                     | NewFields, 2009                 |
| 0.04                             | Human health protection level suggested by USEPA                                                                | McLerran letter 2 March 2010    |
| 0.09                             | NOED 95% protection level all acute, chronic and sublethal responses (n=243)                                    | ERED, 2010                      |
| 0.094 to<br>>0.533               | USEPA for estimated trophic level 4                                                                             | McLerran letter 2 March 2010    |
| 0.105                            | Weighted mean of tropic level 4 concentration from BAF calculation using pore water and translator values       | NewFields, 2009 and OHHEA, 2006 |
| 0.11                             | Aquatic Dependant Wildlife Target Threshold Values                                                              | RSET 2009*                      |
| 0.12                             | Deep water Aquatic Dependant Wildlife                                                                           | RSET 2009*                      |
| 0.15                             | Unrestricted Consumption of fish and shellfish                                                                  | Verbrugge, 2007                 |
| 0.1 <i>57</i>                    | Maximum predicted Trophic level 4 concentration from BAF calculation using pore water and translator values.    | NewFields, 2009 and OHHEA, 2006 |
| 0.2                              | Protective Body Burden                                                                                          | Beckvar et al., 2005            |
| 0.2                              | 95% of all LOED Acute, chronic and sublethal responses (n=93)                                                   | ERED, 2010                      |
| 0.3                              | Ambient Criteria for methyl Hg in fish                                                                          | OHHEA 2006                      |
| 0.32                             | Protective level for women and children under 12 for 16 meals/month and 170 g portions. All others unrestricted | Verbrugge, 2007                 |

\* RSET bioaccumulation assessment values are under review and have not been adopted by the region.

## Summary

- Elevated sediment Hg values
- No bedded sediment toxicity
- No suspended sediment toxicity outside of disposal site boundaries
- □ Tissue concentrations <NOED to <LOED
- Tissue burdens do not predict direct acute, chronic or sublethal toxicity to test organisms
- Modeled uptake to Trophic Level 4 from pore water (BAF determination) methyl Hg concentrations < 0.15 mg/kg wet weight for weighted mean of all stations and less for all but one station.</p>
  - Lower composite maximum is 0.157 mg/kg
    - unrestricted consumption level for Alaska is 0.15 mg/kg
    - 0.32 mg/kg is unrestricted for all groups except pregnant women and children; consumption guidance is restricted to 16, 6-oz meals per month.

### Gastineau Channel Disposal Site



## Practicable Alternative Analysis

- Confined disposal behind Douglas Harbor retaining wall extension
  - Insufficient storage capacity
- □ Confined disposal beneath expanded Douglas Harbor parking lot
  - Insufficient storage capacity
  - Property ownership issues
  - Construction not feasible due to steepness of slope
- □ Confined disposal at Treadwell Mine cave-in
  - Insufficient storage capacity
  - Opposition from historical societies
  - Groundwater infiltration possible
- Confined disposal on tidelands near Thane Ore House
  - DNR will not transfer land to CBJ because not seen as beneficial use of tidelands
- Confined disposal at AML storage yard
  - Cost prohibitive
  - Timing, temporary material storage issues

## Practicable Alternative Analysis

- Upland disposal at Fish Creek Quarry
  - Denied use by CBJ Land & Resources
- Upland disposal at depressions within Treadwell Mine complex
  - Insufficient storage capacity
  - Opposition from historical societies, CBJ Parks & Recreation
  - Access road construction across existing tidelands required
- Upland disposal at Juneau Waste Management Landfill
  - No final decision of acceptance due to lack of non-permeable liner system and limited remaining landfill capacity
  - Cost prohibitive
- Upland disposal in an approved landfill in Washington or Oregon
  - Exceedingly cost prohibitive
- COE evaluate disposal options for material dredged from COE navigation basin
  - Different conclusions unlikely
- Do nothing
  - Southern portion of harbor will need to be shut down resulting in the loss of (120) slips and \$200,000 in annual revenue for CBJ